

Ethernet-коммутаторы агрегации

MES2300-XX, MES3300-XX, MES5312, MES5316A, MES5324A, MES5332A, MES5400-24, MES5400-48, MES5410-48, MES5500-32

Мониторинг и управление Ethernet-коммутаторами MES по SNMP, версия ПО 6.6.3

Дестех

Версия документа	Дата выпуска	Содержание изменений
Версия 1.13	18.04.2024	Синхронизация с версией ПО 6.6.3
Версия 1.12	15.03.2024	Синхронизация с версией ПО 6.6.2.15
Версия 1.11	29.02.2024	Синхронизация с версией ПО 6.6.2.9
Версия 1.10	15.12.2023	Добавлен раздел:
		6.2 Группы агрегации каналов — Link Aggregation Group (LAG)
Версия 1.9	09.10.2023	Изменения в разделе:
		4.1 Системные ресурсы
Версия 1.8	07.09.2023	Синхронизация с версией ПО 6.5.1.4
Версия 1.7	18.06.2023	Изменения в разделе:
		2 КРАТКИЕ ОБОЗНАЧЕНИЯ
Версия 1.6	07.04.2023	Изменения в разделе:
		12 ФУНКЦИИ УПРАВЛЕНИЯ
Версия 1.5	10.03.2023	Синхронизация с версией ПО 6.5.0
Версия 1.4	30.09.2022	Изменения в разделе:
		6.1 Параметры Ethernet-интерфейсов
Версия 1.3	29.07.2022	Добавлен раздел:
		20 КОНФИГУРАЦИЯ VXLAN
Версия 1.2	31.01.2022	Вторая публикация
Версия 1.1	04.02.2021	Первая публикация
Версия программного	6.6.3	
обеспечения		

СОДЕРЖАНИЕ

1	НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP	6
2	КРАТКИЕ ОБОЗНАЧЕНИЯ	6
3	РАБОТА С ФАЙЛАМИ	7
3.1	Сохранение конфигурации	7
3.2	Работа с ТЕТР-сервером	8
3.3	Автоконфигурирование коммутатора	10
3.4	Обновление программного обеспечения	11
4	УПРАВЛЕНИЕ СИСТЕМОЙ	14
4.1	Системные ресурсы	14
4.2	Системные параметры	22
4.3	Параметры стека	24
4.4	Управление устройством	25
5	НАСТРОЙКА СИСТЕМНОГО ВРЕМЕНИ	29
6	КОНФИГУРИРОВАНИЕ ИНТЕРФЕЙСОВ	
6.1	Параметры Ethernet-интерфейсов	
6.2	Конфигурирование VLAN	
6.3	Настройка и мониторинг errdisable-состояния	46
64	Настройка voice vlan	48
6.5	Настройка UDP	۲۵ 49
7	ΗΔΟΤΡΟЙΚΑ ΙΡΙ/Δ-ΔΠΡΕΓΔΙΙΝΗ	
8	ΗΔΟΤΡΟΙΚΑ ΙΡΙ/6-Δ ΠΡΕΟΔΙΙΝΙΑ	53
۵ ۵		5 <i>1</i>
10		+555
10 1		
10.1		
10.2		
11 1	ПРЭППОВАЛ АДРЕСАЦИЛ (multicast addressing)	
11.1	правила групповой адресации (польсаят addressing)	
12	Функции ограничения полсазс-трафика	05
12 1	ФУНКЦИИ УПРАВЛЕНИЯ	
12.1	Механизм ААА	
12.2	настроика доступа	
13		
14	ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ	
14.1	Диагностика оптического трансивера	
15	ФУНКЦИИ ОБЕСПЕЧЕНИЯ БЕЗОПАСТНОСТИ	
15.1	Функции обеспечения защиты портов	75
15.2	Контроль протокола DHCP и опции 82	79
15.3	Защита IP-адреса клиента (IP source Guard)	81
15.4	Контроль протокола ARP (ARP Inspection)	83
15.5	Проверка подлинности клиента на основе порта (802.1x)	84
15.6	Механизм обнаружения петель (loopback-detection)	87
15.7	Контроль широковещательного шторма (storm-control)	89
16	КОНФИГУРИРОВАНИЕ ІР И МАС АСР (СПИСКИ КОНТРОЛЯ ДОСТУПА)	91
17	КОНФИГУРАЦИЯ ЗАЩИТЫ ОТ DOS-ATAK	96
18	КАЧЕСТВО ОБСЛУЖИВАНИЯ — QOS	97
18.1	Настройка QoS	97
18.2	Статистика QoS	100
19	МАРШРУТИЗАЦИЯ	102
19.1	Статическая маршрутизация	102
19.2	Динамическая маршрутизация	102
20	КОНФИГУРАЦИЯ VXLAN	104
приложение	А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ	106

Aeltex

ПРИЛОЖЕНИЕ Б. ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL	07
ПРИЛОЖЕНИЕ В. ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST С ПРИВЯЗКОЙ К МАС А	۲C
	12

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Обозначение	Описание
[]	В квадратных скобках в командной строке указываются необязательные пара- метры, но их ввод предоставляет определенные дополнительные опции.
{}	В фигурных скобках в командной строке указываются обязательные параметры.
«,» «-»	Данные знаки в описании команды используются для указания диапазонов.
« »	Данный знак в описании команды обозначает «или».
«/»	Данный знак при указании значений переменных разделяет возможные значения и значения по умолчанию.
Курсив Calibri	Курсивом Calibri указываются переменные или параметры, которые необходимо заменить соответствующим словом или строкой.
Полужирный курсив	Полужирным курсивом выделены примечания и предупреждения.
<Полужирный курсив>	Полужирным курсивом в угловых скобках указываются названия клавиш на кла- виатуре.
Courier New	Полужирным Шрифтом Courier New записаны примеры ввода команд.

Примечания и предупреждения

Примечания содержат важную информацию, советы или рекомендации по использованию и настройке устройства.

Предупреждения информируют пользователя о ситуациях, которые могут нанести вред устройству или человеку, привести к некорректной работе устройства или потере данных.

Aeltex

1 НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP

snmp-server server snmp-server community public ro snmp-server community private rw snmp-server host 192.168.1.1 traps version 2c private

2 КРАТКИЕ ОБОЗНАЧЕНИЯ

• ifIndex — индекс порта.

Может принимать следующие значения:

Индексы	
- индексы 49-72 —gigabitethernet 1/0/1-24;	
- индексы 1000-1127 — Port-Channel 1-32;	
- индексы 7000-7063 — loopback 1-64.	
- индексы 53-84 — tengigabitethernet 2/0/1-32;	
- индексы 105-136 — tengigabitethernet 3/0/1-32;	
- индексы 157-188 — tengigabitethernet 4/0/1-32;	
- индексы 209-240 — tengigabitethernet 5/0/1-32;	
- индексы 261-292 — tengigabitethernet 6/0/1-32;	
- индексы 313-344 — tengigabitethernet 7/0/1-32;	
- индексы 365-396 — tengigabitethernet $8/0/1-32$	
- индексы 1000-1127 — Port-Channel 1-128;	
- индекс 7000 — loopback 1-64.	

- index-of-rule индекс правила в ACL всегда кратен 20. Если при создании правил будут указаны индексы не кратные 20, то после перезагрузки коммутатора порядковые номера правил в ACL станут кратны 20;
- Значение поля N в IP и MAC ACL любое правило занимает от 1 до 3 полей в зависимости от его структуры;
- IP address IP-адрес для управления коммутатором;

В приведенных в документе примерах используется следующий IP-адрес для управления: **192.168.1.30**;

• ip address of tftp server — IP-адрес TFTP-сервера;

В приведенных в документе примерах используется следующий IP-адрес TFTP-сервера: **192.168.1.1**;

• community — строка сообщества (пароль) для доступа по протоколу SNMP.

В приведенных в документе примерах используются следующие community:

private — права на запись (rw); *public* — права на чтение (ro).

3 РАБОТА С ФАЙЛАМИ

3.1 Сохранение конфигурации

Сохранение конфигурации в энергонезависимую память

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример

Команда CLI: copy running-config startup-config

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Сохранение конфигурации в энергозависимую память из энергонезависимой

MIB: rlcopy.mib

```
Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример

```
Команда CLI:
copy startup-config running-config
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 3 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
```

Мониторинг и управление Ethernet-коммутаторами MES по SNMP

```
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Удаление конфигурации из энергонезависимой памяти

MIB: RADLAN-rndMng

Используемые таблицы: rndAction — 1.3.6.1.4.1.89.1.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.1.2.0 i {eraseStartupCDB (20)}
```

Пример удаления startup-config

```
Команда CLI:
delete startup-config
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.1.2.0 i 20
```

3.2 Работа с ТГТР-сервером

Копирование конфигурации из энергозависимой памяти на TFTP-сервер

MIB: RADLAN-COPY-MIB

```
Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1
```

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования из running-config на TFTP-сервер

```
Команда CLI:
copy running-config tftp://192.168.1.1/MES-config.cfg
```

```
Команда SNMP:

snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \

1.3.6.1.4.1.89.87.2.1.3.1 i 1 \

1.3.6.1.4.1.89.87.2.1.7.1 i 2 \

1.3.6.1.4.1.89.87.2.1.8.1 i 3 \

1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \

1.3.6.1.4.1.89.87.2.1.11.1 s "conf.cfg" \

1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации в энергозависимую память с ТГТР-сервера

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования с TFTP-сервера в running-config

```
Команда CLI:
copy tftp://192.168.1.1/MES-config.cfg running-config
Komaнда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации из энергонезависимой памяти на TFTP-сервер

MIB: файл rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования из startup-config на TFTP-сервер

```
Команда CLI:
copy startup-config tftp://192.168.1.1/MES-config.cfg
Komaнда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.11.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации в энергонезависимую память с TFTP-сервера

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования startup-config с TFTP-сервера

```
Команда CLI:
boot config tftp://192.168.1.1/MES-config.cfg
Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

3.3 Автоконфигурирование коммутатора

<u>Включение автоматического конфигурирования, базирующегося на DHCP (включено по умолчанию)</u>

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClOption67Enable — 1.3.6.1.4.1.89.76.9

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.76.9.0 i {enable(1), disable(2)}
```

Пример

```
Komaндa CLI:
boot host auto-config
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.76.9.0 i 1
```

3.4 Обновление программного обеспечения

Обновление программного обеспечения коммутатора

Проходит в два этапа:

1. Загрузка образа ПО

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp (3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip add of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "image name" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {image(8)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo(4)}
```

Пример

```
Команда CLI:
boot system tftp://192.168.1.1/mes5300a-611-R2.ros
```

```
Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.87.2.1.3.1 i 3 \

1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \

1.3.6.1.4.1.89.87.2.1.6.1 s "mes5300a-611-R2.ros" \

1.3.6.1.4.1.89.87.2.1.8.1 i 1 1.3.6.1.4.1.89.87.2.1.12.1 i 8 \
```

2. Смена активного образа коммутатора

1.3.6.1.4.1.89.87.2.1.17.1 i 4

MIB: RADLAN-DEVICEPARAMS-MIB

Используемые таблицы: rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.13.1.1.3.1 i {image1 (1), image2 (2)}
```

Пример

Команда CLI: boot system inactive-image

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.2.13.1.1.3.1 i 1
```


После загрузки ПО с ТFTP-сервера данная команда применяется автоматически.

Перезагрузка коммутатора

MIB: rlmng.mib

Используемые таблицы: rlRebootDelay — 1.3.6.1.4.1.89.1.10

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.1.10.0 t {задержка времени перед перезагрузкой}
```

Пример перезагрузки, отложенной на 8 минут

```
Команда CLI:
reload in 8
Команда SNMP:
snmpset -v2c -c private -r 0 192.168.1.30 \
```

```
1.3.6.1.4.1.89.1.10.0 t 48000
```

Для указания моментальной перезагрузки требуется указать значение t=0.

Просмотр образа ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndActiveSoftwareFile — 1.3.6.1.4.1.89.2.13.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.13.1.1.2
```

Пример

```
Команда CLI: show bootvar
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.2.13.1.1.2


```
1) Возможные варианты:
```

image1(1) image2(2)

2) Посмотреть активный образ ПО после перезагрузки можно в rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3.

Просмотр загруженных образов ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndImageInfoTable — 1.3.6.1.4.1.89.2.16.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.16.1
```

Пример

Команда CLI: show bootvar

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.2.16.1

Просмотр текущей версии ПО коммутатора

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndBrgVersion — 1.3.6.1.4.1.89.2.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.2.4
```

Пример

Команда CLI: show version

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.4

<u>Просмотр текущей НW версии</u>

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: genGroupHWVersion — 1.3.6.1.4.1.89.2.11.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.11.1
```

Пример

Команда CLI: show system id

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.11.1

4 УПРАВЛЕНИЕ СИСТЕМОЙ

4.1 Системные ресурсы

Просмотр серийного номера коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitGenParamSerialNum — 1.3.6.1.4.1.89.53.14.1.5

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.53.14.1.5
```

Пример

Komaндa CLI: show system id

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.14.1.5

Просмотр информации о загрузке tcam

MIB: RADLAN-QOS-CLI-MIB

Используемые таблицы: rlQosClassifierUtilizationPercent — 1.3.6.1.4.1.89.88.36.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.36.1.1.2
```

Пример

Komaндa CLI: show system tcam utilization

```
Команда SNMP:
```

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.88.36.1.1.2

Просмотр максимального количества хостов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpSFftEntries — 1.3.6.1.4.1.89.29.8.9.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.9.1
```

Пример

Komaндa CLI: show system router resources

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.9.1

Просмотр используемого количества хостов

MIB: rlfft.mib

Используемые таблицы: rlSysmngTcamAllocInUseEntries — 1.3.6.1.4.1.89.204.1.1.1.5

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1

Пример

Komaндa CLI: show system router resources

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1

Просмотр максимального количества маршрутов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpPrefixes — 1.3.6.1.4.1.89.29.8.21.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.21.1
```

Пример

Kоманда CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.29.8.21.1

Просмотр используемого количества маршрутов

MIB: rlip.mib

Используемые таблицы: rllpTotalPrefixesNumber — 1.3.6.1.4.1.89.26.25

snmpwalk -v2c -c <community> <IP address> $\$ 1.3.6.1.4.1.89.26.25

Пример

Komaндa CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.26.25

Просмотр максимального количества IP-интерфейсов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpInterfaces — 1.3.6.1.4.1.89.29.8.25.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.25.1

Пример

Komaндa CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.29.8.25.1

Просмотр используемого количества ІР-интерфейсов

MIB: rlip.mib

Используемые таблицы: rllpAddressesNumber — 1.3.6.1.4.1.89.26.23

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.23
```

Пример

Komaндa CLI: show system router resources

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.23
```

Просмотр системного МАС-адреса коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackMacAddr — 1.3.6.1.4.1.89.53.4.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.53.4.1.7
```

Пример

Команда CLI: show system

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.4.1.7

<u>Просмотр Uptime коммутатора</u>

MIB: SNMPv2-MIB

Используемые таблицы: sysUpTime — 1.3.6.1.2.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.1.3
```

Пример

```
Команда CLI: show system
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
```

Просмотр Uptime порта

MIB: SNMPv2-MIB, IF-MIB

Используемые таблицы:

sysUpTime — 1.3.6.1.2.1.1.3 ifLastChange — 1.3.6.1.2.1.2.2.1.9

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.1.3
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.9.{ifindex}
```

Пример просмотра Uptime порта TenGigabitethernet 1/0/23

```
Команда CLI:
show interface status TenGigabitethernet 1/0/23
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.9.23
```


Из вывода первой команды необходимо отнять вывод второй команды. Полученное значение и будет являться uptime порта.

Включение сервиса мониторинга приходящего на СРИ трафика

MIB: rlsct.mib

Используемые таблицы: rlSctCpuRateEnabled — 1.3.6.1.4.1.89.203.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.203.1.0 i {true(1), false(2)}
```

Пример

```
Команда CLI:
service cpu-input-rate
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.203.1.0 i 1

<u>Просмотр счетчиков и количества обрабатываемых СРИ пакетов в секунду (по типам</u> <u>трафика)</u>

MIB: rlsct.mib

Используемые таблицы: eltCpuRateStatisticsTable — 1.3.6.1.4.1.35265.1.23.1.773.1.2.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.773.1.2.1.1.{rate in pps(2), packets count(3)}
```

Пример просмотра количества обрабатываемых СРИ в секунду пакетов

```
Komaндa CLI:
show cpu input-rate detailed
Komaндa SNMP:
spmpwalk = w2c =c public 192 168 1 3
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.773.1.2.1.1.2
```


Привязка индексов к типам трафика:

```
stack(1)
http(2)
telnet(3)
ssh(4)
snmp(5)
ip(6)
arp(7)
arpInspec(8)
stp(9)
ieee(10)
routeUnknown(11)
ipHopByHop(12)
mtuExceeded(13)
ipv4Multicast(14)
ipv6Multicast(15)
dhcpSnooping(16)
igmpSnooping(17)
mldSnooping(18)
ttlExceeded(19)
ipv4IllegalAddress(20)
ipv4HeaderError(21)
ipDaMismatch(22)
sflow(23)
logDenyAces(24)
dhcpv6Snooping(25)
vrrp(26)
logPermitAces(27)
ipv6HeaderError (28)
```

Изменение лимитов СРИ

MIB: eltSwitchRateLimiterMIB.mib

Используемые таблицы: eltCPURateLimiterTable — 1.3.6.1.4.1.35265.1.23.1.773.1.1.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.773.1.1.1.1.2.{index} i {limiter value}

Пример установки ограничения SNMP-трафика для CPU в 512 pps

Команда CLI: service cpu-rate-limits snmp 512

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.1.773.1.1.1.1.2.4 i 512

<u>Список индексов:</u>

eltCPURLTypeHttp(1) eltCPURLTypeTelnet(2) eltCPURLTypeSsh(3) eltCPURLTypeSnmp(4) eltCPURLTypelp(5) eltCPURLTypeLinkLocal(6) eltCPURLTypeArpRouter(7) eltCPURLTypeArpInspec(9) eltCPURLTypeStpBpdu(10) eltCPURLTypeOtherBpdu(11) eltCPURLTypeIpRouting(12) eltCPURLTypeIpOptions(13) eltCPURLTypeDhcpSnoop(14) eltCPURLTypeIgmpSnoop(16) eltCPURLTypeMldSnoop(17) eltCPURLTypeSflow(18) eltCPURLTypeLogDenyAces(19) eltCPURLTypeIpErrors(20) eltCPURLTypeOther(22)

Мониторинг загрузки СРИ

MIB: rlmng.mib

Используемые таблицы:

rlCpuUtilDuringLastSecond — 1.3.6.1.4.1.89.1.7 rlCpuUtilDuringLastMinute — 1.3.6.1.4.1.89.1.8 rlCpuUtilDuringLast5Minutes — 1.3.6.1.4.1.89.1.9

- Загрузка за последних пять секунд: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.7;
- Загрузка за 1 минуту: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.8;
- Загрузка за 5 минут: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.9.

Дестех

Пример просмотра загрузки CPU за последние пять секунд

Команда CLI: show cpu utilization

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.1.7

Включение мониторинга загрузки СРИ по процессам

MIB: RADLAN-rndMng

Используемые таблицы: rlCpuTasksUtilEnable — 1.3.6.1.4.1.89.1.6

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.1.6.0 i {true(1), false(2)}
```

Пример

Команда CLI: service tasks-utilization Команда SNMP: snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.1.6.0 i 1

Мониторинг загрузки СРИ по процессам

MIB: ELTEX-MES-MNG-MIB

Используемые таблицы:

 $eltCpuTasksUtilStatisticsUtilizationDuringLast5Seconds - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastMinute - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.4 \\ eltCpuTasksUtilStatisticsUtilizationDuringLast5Minutes - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.5 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastSMinutes - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.5 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastSMinutes - 1.3.6.1.4.1.35265.1.2.3.1.9.1.2.1.1.5 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastSMinutes - 1.3.6.1.4.1.3.5.1.4.1.3.5 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastSMinutes - 1.3.6.1.4.1.3.5.1.4.1.3.5 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastSMinutes - 1.3.6.1.4.1.3.5 \\ eltCpuTasksUtilStatisticsUtilizatioNIN \\ eltCpuTasksUtilStatisticsUtiliZ$

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3.{5sec(3), 1min(4), 5min(5)}.{task index}

Пример просмотра загрузки по процессам за последние 5 секунд

```
Команда CLI:
show tasks utilization
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3
```


Привязка индексов к процессам

LTMR(0)	NTST(50)	IPRD(100)
ROOT(1)	CNLD(51)	PNGA(101)
IT33(2)	HOST(52)	UDPR(102)
IV11(3)	ТВІ_(53)	VRRP(103)
URGN(4)	BRMN(54)	TRCE(104)
TMNG(5)	COPY(55)	SSLP(105)
IOTG(6)	TRNS(56)	WBSO(106)
IOUR(7)	MROR(57)	WBSR(107)
IOTM(8)	DFST(58)	GOAH(108)
SSHU(9)	SFTR(59)	ECHO(109)
XMOD(10)	SFMG(60)	TNSR(110)

ACUTEX

MSCm(11)	HCPT(61)	TNSL(111)
STSA(12)	EVAU(62)	SSHP(112)
STSB(13)	EVFB(63)	PTPT(113)
STSC(14)	EVRT(64)	NBBT(114)
STSD(15)	EPOE(65)	SQIN(115)
STSE(16)	DSPT(66)	MUXT(116)
CPUT(17)	B_RS(67)	DMNG(117)
EVAP(18)	TRIG(68)	DSYN(118)
HCLT(19)	MACT(69)	HSEU(119)
EVLC(20)	SW2M(70)	DTSA(120)
SELC(21)	3SWQ(71)	SS2M(121)
SEAU(22)	POLI(72)	DSND(122)
ESTC(23)	OBSR(73)	STMB(123)
SSTC(24)	NTPL(74)	AAAT(124)
BOXS(25)	L2HU(75)	AATT(125)
BSNC(26)	L2PS(76)	SCPT(126)
BOXM(27)	SFSM(77)	DH6C(127)
TRMT(28)	NSCT(78)	RCLA(128)
D_SP(29)	NSFP(79)	RCLB(129)
D_LM(30)	NVCT(80)	RCDS(130)
PLCT(31)	NACT(81)	GRN_(131)
PLCR(32)	NSTM(82)	IPMT(132)
exRX(33)	NINP(83)	SNTP(133)
3SWF(34)	L2UT(84)	DHCP(134)
MSRP(35)	BRGS(85)	DHCp(135)
HSES(36)	FHSS(86)	RELY(136)
HSCS(37)	FHSF(87)	MSSS(137)
MRDP(38)	FFTT(88)	WBAM(138)
MLDP(39)	IPAT(89)	WNTT(139)
SETX(40)	IP6M(90)	RADS(140)
EVTX(41)	IP6L(91)	SNAS(141)
SERX(42)	IP6C(92)	SNAE(142)
EVRX(43)	IP6R(93)	SNAD(143)
HLTX(44)	RPTS(94)	MNGT(144)
LBDR(45)	ARPG(95)	UTST(145)
DDFG(46)	IPG_(96)	SOCK(146)
SYLG(47)	DNSC(97)	TCPP(147)
CDB_(48)	ICMP(98)	UNQt(148)
SNMP(49)	TFTP(99)	· ·

Просмотр общего объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryEntry - 1.3.6.1.4.1.35265.41.1.2.1.1

snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.41.1.2.1.1.{Для MES5312, MES5316A, MES5324A, MES5332A - (3), для MES5400-24, MES5400-48, MES5500-32 - (5)}.0

Децтех

Пример

Команда CLI: show cpu utilization

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.41.1.2.1.1.3.0

Просмотр свободного объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryEntry - 1.3.6.1.4.1.35265.41.1.2.1.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.41.1.2.1.1.{Для MES5312, MES5316A, MES5324A, MES5332A - (7),
для MES5400-24, MES5400-48, MES5500-32 - (9)}.0
```

Пример

```
Команда CLI:
show cpu utilization
```

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.41.1.2.1.1.7.0
```

Включение поддержки сверхдлинных кадров (jumbo-frames)

MIB: radlan-jumboframes-mib.mib

Используемые таблицы: rlJumboFrames — 1.3.6.1.4.1.89.91

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.91.2.0 i {enabled(1), disabled(2)}
```

Пример

```
Команда CLI:
port jumbo-frame
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.91.2.0 і 1
```

4.2 Системные параметры

<u>Контроль состояния блоков питания</u>

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Основной блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.2;
- Резервный блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.3.

Пример просмотра состояния основного блока питания

Команда CLI: show system Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.15.1.2

1) для основного блока питания возможны следующие состояния:

normal (1) warning (2) critical (3) shutdown (4) notPresent (5) notFunctioning (6)

2) для резервного блока питания возможны следующие состояния:

normal (1) warning (2) critical (3) shutdown (4) notPresent (5) notFunctioning (6)

Контроль состояния вентиляторов

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Вентилятор 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.4
- Вентилятор 2: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.5
- Вентилятор 3: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.6
- Вентилятор 4: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.7

Пример просмотра состояния вентилятора 3 коммутатора MES5332A

```
Команда CLI:
show system
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.6
```


Возможны следующие состояния: normal (1)

notFunctioning (5)

Контроль показаний температурных датчиков

MIB: RADLAN-MIB

Используемые таблицы: rlEnv — 1.3.6.1.4.1.89.83.2.1.1.1.4

Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.83.2.1.1.1.4

Пример просмотра температуры датчика

```
Команда CLI:
show system sensors
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.83.2.1.1.1.4
```

Контроль состояния температурных датчиков

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.11

Пример

```
Команда CLI:
show system sensors
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.11
```

4.3 Параметры стека

Мониторинг параметров стека

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackTable — 1.3.6.1.4.1.89.53.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.4
```

Пример просмотра параметров стека

```
Команда CLI: show stack
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4
```

Мониторинг стековых портов

MIB: rlphysdescription.mib

Используемые таблицы: rlCascadeTable — 1.3.6.1.4.1.89.53.23

snmpwalk -v2c -c <community> <IP address> $\$ 1.3.6.1.4.1.89.53.23

Пример просмотра состояния стековых портов

Komaндa CLI: show stack links

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.23

4.4 Управление устройством

Задать/сменить hostname на устройстве

MIB: SNMPv2-MIB

Используемые таблицы: sysName — 1.3.6.1.2.1.1.5

snmpset -v2c -c <community> <IP address> $\$ 1.3.6.1.2.1.1.5.0 s "{hostname}"

Пример присвоения hostname "mes5332A"

Команда CLI: hostname mes2324

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.1.5.0 s "mes5332A"

Включение/отключение management acl

MIB: RADLAN-MNGINF-MIB

Используемые таблицы: rlMngInfEnable — 1.3.6.1.4.1.89.89.2 rlMngInfActiveListName — 1.3.6.1.4.1.89.89.3

snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.89.2.0 i {true(1), false(2)}\
1.3.6.1.4.1.89.89.3.0 s {name}do ping

Seltex

Пример включения management acl с именем eltex

Kоманда CLI: management access-class eltex

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.89.2.0 i 1 \
1.3.6.1.4.1.89.89.3.0 s eltex

Использование утилиты ping

MIB: rlapplication.mib

Используемые таблицы: rsPingInetTable — 1.3.6.1.4.1.89.35.4.2

```
snmpset -v2c -c <community> <IP address>\
```

```
1.3.6.1.4.1.89.35.4.1.1.2.{IP address>} i {Packet count}\
1.3.6.1.4.1.89.35.4.1.1.3.{IP address>} i {Packet Size}\
1.3.6.1.4.1.89.35.4.1.1.4.{IP address>} i {Packet Timeout}\
1.3.6.1.4.1.89.35.4.1.1.5.{IP address>} i {Ping Delay}\
1.3.6.1.4.1.89.35.4.1.1.6.{IP address>} i {Send SNMP Trap(2)}\
1.3.6.1.4.1.89.35.4.1.1.14.{IP address>} i {createAndGo(4), destroy(6),
active(1)}
```

Пример команды ping узла 192.168.1.1

```
Команда CLI:

ping 192.168.1.1 count 10 size 250 timeout 1000

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.35.4.1.1.2.192.168.1.1 i 10 \

1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250 \

1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000 \

1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0 \

1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2 \

1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 4
```


При установке в поле rsPingEntryStatus значения 4 (createAndGo) создаётся и активируется операция ping.

Чтобы повторно пропинговать удалённый хост, требуется в поле rsPingEntryStatus выставить значение 1(active).

После окончания операции обязательно надо удалить все записи, выставив в поле rsPingEntryStatus значение 6 (destroy). Иначе через CLI и SNMP операцию ping до другого хоста выполнить не удастся.

Пример удаления:

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.35.4.1.1.2.192.168.1.1 i 10 1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250 1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000 1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0 1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2 1.3.6.1.4.1.89.35.4.1.1.14.192.168.1.1 i 6

<u> Мониторинг утилиты pinq</u>

MIB: rlapplication.mib

Используемые таблицы: rsPingEntry — 1.3.6.1.4.1.89.35.4.1.1

snmpwalk -v2c -c <community> <IP address>\

1.3.6.1.4.1.89.35.4.1.1.{Количество отправленых пакетов(7), Количество принятых пакетов(8), Минимальное время ответа(9), Средние время ответа(10), Максимальное время ответа(11)}

```
Пример просмотра количества принятых пакетов
```

```
Команда CLI:
ping 192.168.1.1
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.35.4.1.1.8
```


При установке в поле rsPingEntryStatus значения 6 (destroy) мониторинг будет запрещён до создания новой операции.

Настройка системного журнала

MIB: DRAFT-IETF-SYSLOG-DEVICE-MIB

```
Используемые таблицы: snmpSyslogCollectorEntry — 1.3.6.1.4.1.89.82.1.2.4.1
```

```
snmpset -v2c -c <community> -t 10 -r 5 <IP address> \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "{name}" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i {ipv4(1), ipv6(2)} \
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x {ip add in HEX} \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u {udp port number} \
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i {syslog facility(16-24)} \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i {severity level} \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример добавления сервера для логирования

```
Команда CLI:
logging host 192.168.1.1 description 11111
```

```
Команда SNMP:
```

```
snmpset -v2c -c private -t 10 -r 5 192.168.1.30 \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "11111" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i 1 \
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x COA80101 \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u 514 \
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i 23 \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i 6 \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i 4
```

Aeltex

<u>Severity level задается следующим образом:</u>

emergency(0), alert(1), critical(2), error(3), warning(4), notice(5), info(6), debug(7) Facility: local0(16), local1(17), local2(18), local3(19), local4(20), local5(21), local6(22), local7(23), no-map(24)

5 НАСТРОЙКА СИСТЕМНОГО ВРЕМЕНИ

Настройка адреса SNTP-сервера

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfigServerInetTable — 1.3.6.1.4.1.89.92.2.2.17

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.{ip address DEC. in Байты IP-адреса разделяются точками} i {true(1), false(2). Указание значения poll} \ 1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.{ip address in DEC. Байты ІР-адреса разделяются точками} и 0 \ 1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.{ip DEC. Байты address in IP-адреса paзделяются точками} i {createAndGo(4), destroy(6)}

Пример указания SNTP-сервера с IP-адресом 91.226.136.136

Команда CLI: sntp server 91.226.136.136 poll

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.91.226.136.136 i 1 \
1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.91.226.136.136 u 0 \
1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.91.226.136.136 i 4
```

Установка времени опроса для SNTP-клиента

MIB: rlsntp.mib

Используемые таблицы: rlSntpNtpConfig — 1.3.6.1.4.1.89.92.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.1.4.0 i {range 60-86400}
```

Пример установки времени опроса в 60 секунд

Komaндa CLI: sntp client poll timer 60

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.1.4.0 i 60
```


Чтобы вернуться к настройкам по умолчанию достаточно установить время в 1024 сек.

Настройка работы одноадресных SNTP-клиентов

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfig — 1.3.6.1.4.1.89.92.2.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.2.5.0 i {true(1), false(2)}
```

Дестех

Пример разрешения последовательного опроса SNTP-серверов

```
Команда CLI:
sntp unicast client poll
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.5.0 i 1
```

Добавление часового пояса

MIB: rlsntp.mib

Используемые таблицы: rlTimeSyncMethodMode — 1.3.6.1.4.1.89.92.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.1.6.0 s "{TimeZone}" \
1.3.6.1.4.1.89.92.1.7.0 s "{NameZone}"
```

Пример добавления часового пояса на устройстве

```
Команда CLI:
clock timezone test +7
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.1.6.0 s "+7:00" \
1.3.6.1.4.1.89.92.1.7.0 s "test"

6 КОНФИГУРИРОВАНИЕ ИНТЕРФЕЙСОВ

6.1 Параметры Ethernet-интерфейсов

Просмотр Description порта

MIB: IF-MIB или eltMng.mib

Используемые таблицы: if Alias — 1.3.6.1.2.1.31.1.1.1.18 или if longDescr — 1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.1.18.{ifIndex}

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.1.{ifIndex}

Пример просмотра Description на интерфейсе TenGigabitethernet 1/0/23

```
Kоманда CLI: show interfaces description TenGigabitEthernet 1/0/23
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.31.1.1.18.23
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.23
```

Просмотр Description vlan

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qVlanStaticTable — 1.3.6.1.2.1.17.7.1.4.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.4.3.1.1.{vlan id}
```

Пример просмотра Description vlan 100

Команда CLI: show interfaces description vlan 100

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.4.3.1.1.1
```

Просмотр скорости на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifHighSpeed — 1.3.6.1.2.1.31.1.1.15

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.15.{ififndex}
```

Seltex

Пример выключения negotiation на TenGigabitethernet 1/0/23

```
Команда CLI: show interface status TenGigabitethernet 1/0/23
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.31.1.1.15.23
```

Включение/выключение автосогласования скорости на интерфейсе

MIB: rlinterfaces.mib

Используемые таблицы: swlfSpeedDuplexAutoNegotiation — 1.3.6.1.4.1.89.43.1.1.16

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.16.{ifIndex} i {negotiation(1), no negotiation(2)}
```

Пример выключения negotiation на TenGigabitethernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
no negotiation
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.16.23 i 2
```

Установка режимов автосогласования скорости на интерфейсе

MIB: swinterfaces.mib

Используемые таблицы: swlfAdminSpeedDuplexAutoNegotiationLocalCapabilities — 1.3.6.1.4.1.89.43.1.1.40

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.40.{ifIndex} x ``{negotiation mode(HEX-string)}"
```

Пример настройки автосогласования на скорости 1000f и 10000f на интерфейсе TenGigabitethernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
negotiation 1000f 10000f
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.40.23 x 14
```


- 1) В двоичной системе 1000f и 10000f записывается как 00110000000. В НЕХ системе счисления это 180.
- 2) Описание битов
 - Default(0), Unknown(1), TenHalf(2), TenFull(3),

FastHalf(4), FastFull(5), GigaHalf(6), GigaFull(7), TenGigaFull(8), FiveGigaFull(9), TwoPointFiveFull(10).

<u>Порядок битов</u>

109876543210

Просмотр duplex-режима порта

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsDuplexStatus — 1.3.6.1.2.1.10.7.2.1.19

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.19.{ifindex}
```

Пример просмотра режима duplex порта TenGigabitEthernet 1/0/23

```
Команда CLI: show interfaces status TenGigabitEthernet 1/0/23
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.2.1.19.23
```


Расшифровка выдаваемых значений

unknown (1) halfDuplex (2) fullDuplex (3)

<u>Смена duplex-режима на интерфейсе</u>

MIB: RADLAN-rlInterfaces

Используемые таблицы: swlfDuplexAdminMode — 1.3.6.1.4.1.89.43.1.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.3.{ifIndex} i {none(1),half(2),full (3)}
```

Пример смены режима duplex порта TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
duplex half
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.3.23 i 2
```

Просмотр среды передачи интерфейса

MIB: EtherLike-MIB

Используемые таблицы: swlfTransceiverType — 1.3.6.1.4.1.89.43.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.7.{ifindex}
```

Пример просмотра среды передачи порта TenGigabitEthernet 1/0/23

```
Komaндa CLI:
show interfaces status TenGigabitEthernet 1/0/1
Komaндa SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.7.23
```


<u>Расшифровка выдаваемых значений</u>

Copper (1) FiberOptics (2) ComboCopper (3) ComboFiberOptics (4)

Управление потоком (flowcontrol)

MIB: RADLAN-rlInterfaces

Используемые таблицы: swlfFlowControlMode — 1.3.6.1.4.1.89.43.1.1.14

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.14.{ifindex} i {on(1),off(2),auto (3)}
```

Пример включения управления потоком на интерфейсе TenGigabitethernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
flowcontrol on
Komaндa SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.14.23 i 1
```

Просмотр административного состояния порта

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.7.{ifIndex}
```

Пример просмотра статуса порта TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces status TenGigabitEthernet 1/0/23
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.7.23
```


Возможные варианты

up(1) down(2) testing(3)

Включить/выключить конфигурируемый интерфейс

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.7.{ifIndex} i {up(1),down(2)}

Пример

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
shutdown
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.2.2.1.7.23 i 2
```

Просмотр оперативного состояния порта

MIB: IF-MIB

Используемые таблицы: ifOperStatus — 1.3.6.1.2.1.2.2.1.8

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.8.{ifIndex}
```

Пример просмотра статуса порта TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces status TenGigabitEthernet 1/0/23
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.8.23
```


Возможные варианты

up(1) down(2)

Определение типа подключения порта

MIB: rlinterfaces.mib

Используемые таблицы: swlfTransceiverType — 1.3.6.1.4.1.89.43.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.7.{ifIndex}
```

Seltex

Пример определения типа порта TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces status
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.43.1.1.7.23

Возможные варианты

regular (1) fiberOptics (2) comboRegular (3) comboFiberOptics (4)

Просмотр счетчика unicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInUcastPkts — 1.3.6.1.2.1.2.2.1.11

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.11.{ifIndex}

Пример просмотра счетчика входящих unicast-пакетов на интерфейсе TenGigabitethernet 1/0/23

Команда CLI: show interface counters TenGigabitethernet 1/0/23

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.11.23
```

Просмотр счетчика multicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInMulticastPkts — 1.3.6.1.2.1.31.1.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.2.{ifindex}
```

Пример просмотра счетчика входящих multicast-пакетов на интерфейсе TenGigabitethernet 1/0/23

```
Komaндa CLI:
show interface counters TenGigabitethernet 1/0/23
Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.31.1.1.2.23
```

Просмотр счетчика broadcast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInBroadcastPkts — 1.3.6.1.2.1.31.1.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.3.{ifindex}
```
Пример просмотра счетчика входящих broadcast-пакетов на интерфейсе TenGigabitethernet 1/0/23

Команда CLI:

show interface counters TenGigabitethernet 1/0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.3.23

Просмотр счетчиков октетов на интерфейсе

MIB: IF-MIB

Используемые таблицы:

ifInOctets — 1.3.6.1.2.1.2.2.1.10 ifHCInOctets — 1.3.6.1.2.1.31.1.1.1.6 ifOutOctets — 1.3.6.1.2.1.2.2.1.16 ifHCOutOctets — 1.3.6.1.2.1.31.1.1.1.10

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.10.{ifindex}
```

Пример просмотра счетчика принятых октетов на интерфейсе TenGigabitethernet 1/0/23

Команда CLI: show interface counters TenGigabitethernet 1/0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.2.2.1.10.23

Под октетом имеется в виду количество байт.

1 октет = 1 байт

Просмотр счетчика FCS Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsFCSErrors — 1.3.6.1.2.1.10.7.2.1.3

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.3.{ifindex}

Пример просмотра счетчика FCS Errors на интерфейсе TenGigabitethernet 1/0/23

Kоманда CLI: show interface counters TenGigabitethernet 1/0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.2.1.3.23

Просмотр счетчика Internal MAC Rx Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsInternalMacReceiveErrors — 1.3.6.1.2.1.10.7.2.1.16

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.16.{ifindex}

Пример просмотра счетчика Internal MAC Rx Errors на интерфейсе TenGigabitethernet 1/0/23

Komaндa CLI: show interface counters TenGigabitethernet 1/0/23 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.2.1.16.23

Просмотр счетчика Transmitted Pause Frames на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3OutPauseFrames — 1.3.6.1.2.1.10.7.10.1.4

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.10.1.4.{ifindex}

Пример просмотра счетчика Transmitted Pause Frames на интерфейсе TenGigabitethernet 1/0/23

Komaндa CLI: show interface counters TenGigabitethernet 1/0/23 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.10.1.4.23

Просмотр счетчика Received Pause Frames на интерфейсе

MIB: EtherLike-MIB

```
Используемые таблицы: dot3InPauseFrames — 1.3.6.1.2.1.10.7.10.1.3
```

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.10.1.3.{ifindex}

Пример просмотра счетчика Received Pause Frames на интерфейсе TenGigabitethernet 1/0/23

```
Kоманда CLI: show interface counters TenGigabitethernet 1/0/23
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.10.1.3.23

Очистка счетчиков интерфейсов

MIB: rlInterfaces.mib

Используемые таблицы: rllfClearPortMibCounters — 1.3.6.1.4.1.89.54.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.54.4.0 x {битовая маска}
```

Пример очистки счетчика интерфейсов

В значении очистки счетчиков в стеке задается битовая маска для всех портов всех юнитов стека:

2) Посмотреть значение битовой маски можно командой:

snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.54.9.0

Мониторинг загрузки портов коммутатора

MIB: eltMes.mib

Используемые таблицы: eltSwlfUtilizationEntry — 1.3.6.1.4.1.35265.1.23.43.2.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.43.2.1.{parametr}
```

Пример

```
Komaндa CLI:
show interfaces utilization
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.43.2.1.1
```


Список возможных параметров

```
eltSwlfUtilizationlfIndex(1)
eltSwlfUtilizationAverageTime(2)
eltSwlfUtilizationCurrentInPkts(3)
```

eltSwIfUtilizationCurrentInRate(4) eltSwIfUtilizationCurrentOutPkts(5) eltSwIfUtilizationCurrentOutRate(6) eltSwIfUtilizationAverageInPkts(7) eltSwIfUtilizationAverageInRate(8) eltSwIfUtilizationAverageOutPkts(9) eltSwIfUtilizationAverageOutRate(10)

Включение/выключение режима однонаправленной передачи порта

MIB: ELTEX-MES-eltInterfaces

Используемые таблицы: eltSwlfTable — 1.3.6.1.4.1.35265.1.23.43.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.43.1.1.15.{index} i {disable(0), send-only(1)

Пример включения режима однонаправленной передачи порта

```
Komaндa CLI:
interface TenGigabitEthernet1/0/1
unidirectional send-only
exit
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.43.1.1.15.1 i 1

6.2 Группы агрегации каналов — Link Aggregation Group (LAG)

Включение/выключение работы интерфейса в составе группы агрегации

MIB: IEEE8023-LAG-MIB

```
Используемые таблицы:
dot3adAggPortTable — 1.2.840.10006.300.43.1.2.1
```

```
snmpset -v2c -c <community> <IP address> \
1.2.840.10006.300.43.1.2.1.1.20.{ifIndex} x {auto and long timeout(A2), auto and
short timeout(E2), on(22)}\
1.2.840.10006.300.43.1.2.1.1.4.{ifIndex} i {ifIndex}
```

Пример включения channel-group на TenGigabitethernet 1/0/1

Команда CLI: interface TenGigabitethernet 1/0/1 channel-group 1 mode auto

Команда SNMP:

sudo snmpset -v2c -c private 192.168.1.30 \
1.2.840.10006.300.43.1.2.1.1.20.1 x "A2" \
1.2.840.10006.300.43.1.2.1.1.4.1 i 10000

Пример выключения channel-group на TenGigabitethernet 1/0/1

Команда CLI: interface TenGigabitethernet 1/0/1 no channel-group

Команда SNMP:

sudo snmpset -v2c -c private 192.168.1.30 \
1.2.840.10006.300.43.1.2.1.1.20.1 s '"'\
1.2.840.10006.300.43.1.2.1.1.4.1 i 0

6.3 Конфигурирование VLAN

Добавление VLAN в vlan database

MIB: rlvlan.mib

Используемые таблицы:

rldot1qVlanStaticList1to1024 — 1.3.6.1.4.1.89.48.69.1.2 rldot1qVlanStaticList1025to2048 — 1.3.6.1.4.1.89.48.69.1.3 rldot1qVlanStaticList2049to3072 — 1.3.6.1.4.1.89.48.69.1.4 rldot1qVlanStaticList3073to4094 — 1.3.6.1.4.1.89.48.69.1.5

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.69.1.2 x {битовая маска}

Пример создания vlan 994 во vlan database

Komaндa CLI: vlan database vlan 994

Команда SNMP:

1) При расчете битовой маски для vlan 1025-2048 выполнить вычитание 1024 от необходимого vlan, а затем уже выполнять расчет маски. Аналогично для vlan 2049-3072: необходимо отнять 2048 перед расчетом. Для 3073-4094 — вычесть 3072. Битовая маска должна включать в себя не менее 10 символов.

2) Пример расчета битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

<u>Добавление VLAN на порт</u>

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.68.1.{1-8}.{ifIndex} x {vlan в виде битовой маски}
```

Дестех

Пример добавления vlan 622 и 3100 на интерфейс TenGigabitEthernet 1/0/23 в режим trunk

Команда CLI: interface TenGigabitEthernet 1/0/23 switchport mode trunk switchport trunk allowed vlan add 622,3100

Команда SNMP:

Пример добавления vlan 622 на интерфейс TenGigabitEthernet 1/0/23 в качестве native vlan

Пример добавления vlan 622 на интерфейс TenGigabitEthernet 1/0/23 в режиме access

Komaндa CLI: interface TenGigabitEthernet 1/0/23 switchport access vlan 622

Команда SNMP:

1. Перечень таблиц:

rldot1qPortVlanStaticEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.1.{ifindex} rldot1qPortVlanStaticEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.2.{ifindex} rldot1qPortVlanStaticEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.3.{ifindex} rldot1qPortVlanStaticEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.4.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.5.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1025to2048 1.3.6.1.4.1.89.48.68.1.6.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList3073to4094 1.3.6.1.4.1.89.48.68.1.8.{ifindex} 2. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

3. Битовая маска должна включать в себя не менее 10 символов.

Запретить default VLAN на порту

MIB: eltVlan.mib

```
Используемые таблицы: eltVlanDefaultForbiddenPorts — 1.3.6.1.4.1.35265.1.23.5.5.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.5.5.1.0 x {порт в виде битовой маски}
```

```
Пример запрета default vlan на порту TenGigabitEthernet 1/0/23
```

```
Команда CLI:
interface TenGigabitethernet 1/0/23
switchport forbidden default-vlan
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.5.5.1.0 x 0000020000
```


1. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

2. Битовая маска должна включать в себя не менее 10 символов.

Просмотр имени VLAN

MIB: rlvlan.mib

Используемые таблицы: rldot1qVlanStaticName — 1.3.6.1.4.1.89.48.70.1.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.70.1.1.{vlan}
```

Пример просмотра имени vlan 994

```
Komaндa CLI:
show vlan tag 994
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.48.70.1.1.994

<u>Просмотр членства порта во VLAN</u>

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.68.1.{1-4}.{ifindex}
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.68.1.{5-8}.{ifindex}
```

Aeltex

Пример просмотра VLAN на TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces switchport TenGigabitethernet 1/0/23
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.1.23
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.5.23
```


1. В примере представлены 2 команды snmpwalk. Если порт Tagged — значения в выводе второй команды принимают нулевое значение и номер VLAN соответствует значениям вывода первой команды. Если порт Untagged — в выводе второй команды присутствуют значения, отличные от нуля, и номер VLAN соответствует этим значениям.

2. Перечень таблиц:

```
rldot1qPortVlanStaticEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.1.{ifindex}
rldot1qPortVlanStaticEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.2.{ifindex}
rldot1qPortVlanStaticEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.3.{ifindex}
rldot1qPortVlanStaticEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.4.{ifindex}
rldot1qPortVlanStaticUntaggedEgressList1to1024 —
1.3.6.1.4.1.89.48.68.1.5.{ifindex}
rldot1qPortVlanStaticUntaggedEgressList1025to2048
— 1.3.6.1.4.1.89.48.68.1.6.{ifindex}
rldot1qPortVlanStaticUntaggedEgressList2049to3072
— 1.3.6.1.4.1.89.48.68.1.7.{ifindex}
rldot1qPortVlanStaticUntaggedEgressList3073to4094
— 1.3.6.1.4.1.89.48.68.1.8.{ifindex}
```

3. Полученные в результате выполнения запроса значения представляют из себя битовую маску, методика расчета которой приведена в разделе «Приложение А. Методика расчета битовой маски».

Настройка режима работы порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeEntry — 1.3.6.1.4.1.89.48.22.1

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.48.22.1.1.{ifIndex} i {general(1), access(2), trunk(3),
 customer(7)}

Пример настройки интерфейса TenGigabitEthernet 1/0/23 в режим trunk

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
switchport mode trunk
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.22.1.1.21 i 2
```

Просмотр режима порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeState — 1.3.6.1.4.1.89.48.22.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.22.1.1.{ifindex}
```

Пример просмотра режима на TenGigabitethernet 1/0/23

Команда CLI:

show interfaces switchport TenGigabitethernet 1/0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.48.22.1.1.23

Возможные варианты

general(1) access(2) trunk (3) customer (7)

<u>Назначить pvid на интерфейс</u>

MIB: Q-BRIDGE-MIB.mib

Используемые таблицы: dot1qPortVlanTable — 1.3.6.1.2.1.17.7.1.4.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.4.5.1.1.{ifindex} u {1-4094}
```

Пример назначения pvid 15 для TenGigabitEthernet 1/0/23

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
switchport general pvid 15
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.7.1.4.5.1.1.23 u 15
```

Настройка тар тас

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanGroupTable — 1.3.6.1.4.1.89.48.45

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.45.1.3.{MAC address in DEC}.{mask} i {map-group number} \
1.3.6.1.4.1.89.48.45.1.4.{MAC address in DEC}.{mask} i {createAndGo(4),
destroy(6)}
```

Пример

Команда CLI: vlan database

map mac a8:f9:4b:33:29:c0 32 macs-group 1

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.45.1.3.168.249.75.51.41.192.32 i 1 \
1.3.6.1.4.1.89.48.45.1.4.168.249.75.51.41.192.32 i 4
```

<u>Установка правила классификации VLAN, основанного на привязке к MAC-адресу, для</u> интерфейса

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanPortTable — 1.3.6.1.4.1.89.48.46.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.46.1.2.58.1 u {vlan} 1.3.6.1.4.1.89.48.46.1.3.58.1 i
{createAndGo(4), destroy(6)}
```

Пример включения правила классификации VLAN для интерфейса TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
switchport general map macs-group 1 vlan 20
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.46.1.2.23.1 u 1 \
1.3.6.1.4.1.89.48.46.1.3.23.1 i 4
```

6.4 Настройка и мониторинг errdisable-состояния

```
Просмотр настроек для автоматической активации интерфейса
```

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.2.1.2
```

Пример просмотра настроек для автоматической активации интерфейса

```
Команда CLI:
show errdisable recovery
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.2.1.2
```

Просмотр причины блокировки порта

MIB: rlErrdisableRecoveryIfReason

Используемые таблицы: rlErrdisableRecoveryIfReason — 1.3.6.1.4.1.89.128.3.1.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.3.1.1
```

Пример

Komaндa CLI: show errdisable interfaces

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.3.1.1

Возможные варианты:

loopback-detection (1) port-security (2) dot1x-src-address (3) acl-deny (4) stp-bpdu-guard (5) stp-loopback-guard (6) unidirectional-link (7) dhcp-rate-limit (8) l2pt-guard (9) storm-control (10)

Настройка автоматической активации интерфейса

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.128.2.1.2. {index of reason} i {true(1), false(2)}
```

Пример включения автоматической активации интерфейса в случае loopback detection

Komaндa CLI: errdisable recovery cause loopback-detection Komaндa SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.128.2.1.2.1 i 1

Возможные значения index of reason, в зависимости от типа выполняемой настройки:

```
loopback detection — (1)
port-security — (2)
dot1x-src-address — (3)
acl-deny — (4)
stp-bpdu-guard — (5)
stp-loopback-guard (6)
unidirectional-link — (8)
storm-control — (9)
l2pt-guard — (11)
```

Настройка интервала выхода интерфейса из errdisable состояния

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryInterval — 1.3.6.1.4.1.89.128.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.1.0 i {interval 30-86400}

Пример настройки 30 секундного интервала выхода из состояния errdisable

```
Команда CLI:
errdisable recovery interval 30
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.128.1.0 i 30
```

6.5 Настройка voice vlan

Добавление voice vlan

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceAdminVid — 1.3.6.1.4.1.89.48.54.8

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.8.0 i {vlan id}

Пример добавления voice vlan id 10

```
Команда CLI:
voice vlan id 10
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.8.0 i 10
```

Активация voice vlan на интерфейсе

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceOUIBasedPortTable — 1.3.6.1.4.1.89.48.54.12.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.12.5.1.1.{ifIndex} i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.{ifIndex} u {voice vlan id}
```

Пример

```
Команда CLI:
interface TenGigabitethernet 1/0/23
voice vlan enable
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.5.1.1.23 i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.23 u 10
```

<u>Редактирование таблицы ОUI</u>

MIB: rlvlanVoice.mib

Используемые таблицы: vlanVoiceOUIBasedTable — 1.3.6.1.4.1.89.48.54.12.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.12.4.1.3.{OUI in DEC. Байты разделяются точками} i
{createAndGo(4), destroy(6)}
```

Пример

```
Kоманда CLI:
voice vlan oui-table add 002618
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.4.1.3.0.38.24 i 4
```

6.6 Настройка LLDP

Глобальное включение/отключение LLDP

MIB: rlLldp.mib

Используемые таблицы: rlLldpEnabled — 1.3.6.1.4.1.89.110.1.1.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.110.1.1.1.0 i {true (1), false (2)}
```

Пример отключения LLDP

Koманда CLI: no Lldp run

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.1.1.0 i 2
```

Настройка lldp-med политики с указанием номера voice vlan для тегированного трафика voice vlan

MIB: rllldb.mib

Используемые таблицы: rlLldpXMedLocMediaPolicyContainerTable — 1.3.6.1.4.1.89.110.1.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.110.1.2.1.1.2.1 i {voice(1), voice-signaling(2), guest-voice(3),
guest-voice-signaling(4), softphone-voice(5), video-conferencing(6), streaming-
video(7), video-signaling(8) } \
1.3.6.1.4.1.89.110.1.2.1.1.3.1 i {vlan} \
1.3.6.1.4.1.89.110.1.2.1.1.4.1 i {priority} \
1.3.6.1.4.1.89.110.1.2.1.1.7.1 {true(1), false(2)} \
1 1.3.6.1.4.1.89.110.1.2.1.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример настройки политики lldp-med с указанием VLAN 10, указанием приоритета 4

```
Команда CLI:
lldp med network-policy 1 voice vlan 10 vlan-type tagged up 4
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.110.1.2.1.1.2.1 i 1 \ 1.3.6.1.4.1.89.110.1.2.1.1.3.1 i 10 \ 1.3.6.1.4.1.89.110.1.2.1.1.4.1 i 4 \ 1.3.6.1.4.1.89.110.1.2.1.1.7.1 i 1 \ 1.3.6.1.4.1.89.110.1.2.1.1.9.1 i 4

Настройка IIdp-med политики для тегированного трафика voice vlan

MIB: rllldb.mib

Используемые таблицы: rlLldpXMedNetPolVoiceUpdateMode — 1.3.6.1.4.1.89.110.1.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.110.1.7.0 i {manual(0), auto(1)}
```

Пример настройки политики lldp-med в режиме auto

Команда CLI: no lldp med network-policy voice auto

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.7.0 i 1

7 НАСТРОЙКА ІРV4-АДРЕСАЦИИ

Создание IP-адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.1.1.2.{ip address(DEC)} i {ifIndex} \
1.3.6.1.4.1.89.26.1.1.3.{ip address(DEC)} a {netmask}
```

Пример настройки IP-адреса 192.168.10.30/24 на vlan 30

Команда CLI: interface vlan 30 ip address 192.168.10.30 /24

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \
1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0

<u>Удаление IP-адреса на interface vlan</u>

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.26.1.1.2.{ip address(DEC)} i {ifIndex} \
    1.3.6.1.4.1.89.26.1.1.3.{ip address(DEC)} a {netmask} \
    1.3.6.1.4.1.89.26.1.1.6.{ip address(DEC)} i 2
```

Пример удаления IP-адреса 192.168.10.30 на интерфейсе vlan 30

Команда CLI: interface vlan 30 no ip address 192.168.10.30

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \
1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0 \
1.3.6.1.4.1.89.26.1.1.6.192.168.10.30 i 2

Получение IP-адреса по DHCP на interface vlan

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClActionStatus — 1.3.6.1.4.1.89.76.3.1.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.76.3.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Сестех

Пример

Komaндa CLI: interface vlan 30 ip address dhcp

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \1.3.6.1.4.1.89.76.3.1.2.100029 i 4

Добавить/удалить шлюз по умолчанию

MIB: rlip.mib

Используемые таблицы: rllnetStaticRouteEntry — 1.3.6.1.4.1.89.26.28.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.0.1.4.{IP address}.0 i {metric(4)} \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.1.4.{IP address}.0 i {remote(4)} \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.1.4.{IP address}.0 i {createAndGo (4),
destroy(6)}
```

Пример добавления ip default-gateway 192.168.1.10

Команда CLI: ip default-gateway 192.168.1.10

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.28.1.7.1.4.0.0.0.0.0.1.4.192.168.1.10.0 u 4 \
1.3.6.1.4.1.89.26.28.1.8.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4 \
1.3.6.1.4.1.89.26.28.1.10.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4
```

8 НАСТРОЙКА IPV6-АДРЕСАЦИИ

Включение/выключение IPv6-адресации на interface vlan

MIB: ip-mib.mib

Используемые таблицы: ipv6InterfaceEnableStatus — 1.3.6.1.2.1.4.30.1.5

snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.30.1.5.{ifindex} i {enable(1), disable(2)}

Пример включения IPv6-адресации на vlan 2

Команда CLI: interface vlan 2 ipv6 enable

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.4.30.1.5.100001 i 1
```

Создание/удаление IPv6-адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rllpAddressEntry — 1.3.6.1.4.1.89.26.36.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.36.1.5.{количество байт в адресе}.{каждый байт в десятичном
виде через разделитель}.2.0 i {ifindex} \
1.3.6.1.4.1.89.26.36.1.13.{количество байт в адресе}.{каждый байт в десятичном
виде через разделитель}.2.0 u {маска в десятичном виде}\
1.3.6.1.4.1.89.26.36.1.11.{количество байт в адресе}.{каждый байт в десятичном
виде через разделитель}.2.0 i {createAndGo (4), destroy(6)}
```

Пример добавления адреса 2001::1/64 на vlan 2

Команда CLI: interface vlan 2 ipv6 address 2001::1/64

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.36.1.5.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 100001 \
1.3.6.1.4.1.89.26.36.1.13.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 u 64 \
1.3.6.1.4.1.89.26.36.1.11.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 4
```

Aeltex

9 HACTPOЙKA GREEN ETHERNET

Глобальное отключение green-ethernet short-reach

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthShortReachEnable — 1.3.6.1.4.1.89.134.2

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.2.0 i {true (1), false (2)}

Пример отключения green-ethernet short-reach

Kоманда CLI: no green-ethernet short-reach

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.2.0 i 2
```

Глобальное отключение green-ethernet energy-detect

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthEnergyDetectEnable — 1.3.6.1.4.1.89.134.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.1.0 i {true (1), false (2)}
```

Пример отключения green-ethernet energy-detect

Komaндa CLI: no green-ethernet energy-detect

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.1.0 i 2
```

Просмотр параметров green-ethernet

MIB: rlGreenEth.mib

Используемые таблицы: rlGreenEthCumulativePowerSaveMeter — 1.3.6.1.4.1.89.134.5

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.134.5
```

Пример просмотра параметров green-ethernet

Kоманда CLI: show green-ethernet

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.134.5
```

10 НАСТРОЙКА КОЛЬЦЕВЫХ ПРОТОКОЛОВ

10.1 Протокол ERPS

Определение номера west-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.2

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.2

Пример

Команда CLI: show erps

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.2
```

Просмотр состояния west-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPortState —1.3.6.1.4.1.35265.35.1.1.3.1.1.3

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.3

Пример

Команда CLI: show erps vlan 10

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.3
```


Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

<u>Определение номера east-порта</u>

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.4
```

Децтех

Пример

Команда CLI: show erps

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.4

Просмотр состояния east-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPortState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.5

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.5

Пример

```
Komaндa CLI:
show erps vlan 10
```

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.5

Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

Просмотр состояния кольца

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSRingState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.12

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.12

Пример

```
Komaндa CLI:
show erps vlan 10
```

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.12

<u>Возможные состояния кольца erps:</u>

Init (1)
 Idle(2)
 Protection (3)
 Manual-switch (4)
 Forced-switch (5)
 Pending (6)

10.2 Настройка протокола Spanning Tree

Включение/отключение протокола spanning-tree

MIB: radlan-brgmacswitch.mib

Используемые таблицы: rldot1dStp — 1.3.6.1.4.1.89.57.2.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.3.0 i {enabled(1), disabled(2)}
```

Пример отключения spanning-tree

```
Команда CLI:
no spanning-tree
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.3.0 i 2
```

Включение/отключение протокола spanning-tree на конфигурируемом интерфейсе

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpPortTable — 1.3.6.1.2.1.17.2.15.1.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.2.15.1.4.{ifIndex} i {enabled(1), disabled(2)}
```

Пример отключения работы spanning-tree на интерфейсе TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
spanning-tree disable
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.2.15.1.4.23 i 2
```

<u>Включение/выключение режима обработки пакетов BPDU интерфейсом, на котором</u> выключен протокол STP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortTable — 1.3.6.1.4.1.89.57.2.13.1.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.13.1.4.{ifIndex} i {filtering(1), flooding(2)}
```

Пример включения фильтрации BPDU на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
interface tengigabitethernet 1/0/23
spanning-tree bpdu filterin
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.13.1.4.23 i 1
```

Настройка режима работы протокола spanning-tree

MIB: draft-ietf-bridge-rstpmib.mib

Используемые таблицы: dot1dStpVersion — 1.3.6.1.2.1.17.2.16

snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.2.16.0 i {stp(0), rstp(2), mstp(3)}

Пример установки режима работы протокола Spanning-tree

```
Команда CLI:
spanning-tree mode rstp
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.2.16.0 i 2
```

<u>Просмотр роли порта в STP</u>

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortRole — 1.3.6.1.4.1.89.57.2.13.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.13.1.7.{ifindex}
```

```
Пример просмотра роли TenGigabitethernet 1/0/23 в STP
```

```
Komaндa CLI:
show spanning-tree TenGigabitethernet 1/0/23
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```


<u>Возможные состояния порта:</u>

Disabled (1)
 Alternate (2)
 Backup(3)
 Root(4)
 Designated(5)

Просмотр состояния порта в MSTP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1sMstpInstancePortState — 1.3.6.1.4.1.89.57.6.2.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.6.2.1.4.1.{ifindex}
```

Пример просмотра состояния TenGigabitethernet 1/0/23 в mstp

Kоманда CLI: show spanning-tree TenGigabitethernet0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.57.6.2.1.4.1.23

Возможные состояния порта:

- 1. Disabled (1)
- 2. Blocking (2)
- 3. Listening (3)
- 4. Forwarding(5)

<u>Количество перестроений (topology change)</u>

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTopChanges — 1.3.6.1.2.1.17.2.4.0

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.2.4.0
```

Пример просмотра количества перестроений

Komaндa CLI: show spanning-tree

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.17.2.4.0

Просмотр времени с последнего перестроения (topology change)

MIB: MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTimeSinceTopologyChange — 1.3.6.1.2.1.17.2.3.0

snmpwalk -v2c -c <community> <IP address> $\$ 1.3.6.1.2.1.17.2.3.0

Пример просмотра с последнего перестроения

```
Команда CLI:
show spanning-tree
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.17.2.3.0 <u>Просмотр интерфейса, с которого принят последний topology change</u>

MIB: eltBridgeExtMIB.mib

Используемые таблицы: eltdot1dStpLastTopologyChangePort — 1.3.6.1.4.1.35265.1.23.1.401.0.5.2

snmpwalk -v2c -c <community> <IP address> \1.3.6.1.4.1.35265.1.23.1.401.0.5.2

Пример просмотра интерфейса, с которого принят последний topology change

Команда CLI: show spanning-tree

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.401.0.5.2

11 ГРУППОВАЯ АДРЕСАЦИЯ

11.1 Правила групповой адресации (multicast addressing)

Запрещение динамического добавления порта к многоадресной группе

MIB: rlbrgmulticast.mib

Используемые таблицы: rlBrgStaticInetMulticastEntry — 1.3.6.1.4.1.89.116.5.1

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.116.5.1.6.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 x 00000000000000 \ 1.3.6.1.4.1.89.116.5.1.7.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 x {Битовая маска интерфейса} \ 1.3.6.1.4.1.89.116.5.1.8.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 i {createAndGo(4), destroy (6)}

Пример запрета изучения группы 239.200.200.17 на порту TenGigabitEthernet 1/0/23 в vlan 622

Команда CLI:

interface vlan 622 bridge multicast forbidden ip-address 239.200.200.17 add TenGigabitEthernet 1/0/23

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.116.5.1.6.622.1.4.239.200.200.17.1.4.0.0.0.0 x 0000000000000
\
1.3.6.1.4.1.89.116.5.1.7.622.1.4.239.200.200.17.1.4.0.0.0.0 x 0000020000 \
1.3.6.1.4.1.89.116.5.1.8.622.1.4.239.200.200.17.1.4.0.0.0.0 i 4

1) Суммарное количество цифр в OID 1.3.6.1.4.1.89.116.5.1.6 и OID 1.3.6.1.4.1.89.116.5.1.7 должно быть одинаковым и чётным.

2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Запрещение прохождения незарегистрированного Multicast-трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastUnregFilterEnable — 1.3.6.1.4.1.89.55.4.1

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.4.1.0 х "{Битовая маска для интерфейсов}"

Пример запрещения прохождения незарегистрированного Multicast-трафика для портов TenGigabitEthernet 1/0/20-21

Команда CLI: interface range TenGigabitEthernet 1/0/20-21 bridge multicast unregistered filtering

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.4.1.0 x "000018000000000"

1) Для удаления настройки надо заменить соответствующие портам поля в битовой маске на 0.

2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Фильтрация многоадресного трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastEnable — 1.3.6.1.4.1.89.55.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.55.1.0 i {true(1), false(2)}
```

Пример включения фильтрации многоадресного трафика

Команда CLI: bridge multicast filtering

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.1.0 i 1
```

<u>Глобальное включение iqmp snoopinq</u>

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpSnoopEnable — 1.3.6.1.4.1.89.55.2.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.55.2.2.0 i {true(1), false(2)}
```

Пример

Команда CLI: ip igmp snooping

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.2.2.0 i 1
```

Включение igmp snooping в vlan

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpMldSnoopVlanEnable — 1.3.6.1.4.1.89.55.5.5.1.3

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.55.5.5.1.3.1.{vlan id} i {true(1), false(2)}

Пример включения igmp snooping в vlan 30

```
Команда CLI:
ip igmp snooping vlan 30
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.5.5.1.3.1.30 i 1
```

<u>Просмотр таблицы iqmp snoopinq</u>

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpMldSnoopMembershipTable — 1.3.6.1.4.1.89.55.5.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.5.4
```

Пример

Команда CLI: show ip igmp snooping groups

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.55.5.4

Настройка multicast-tv vlan (MVR)

MIB: rlvlan.mib

Используемые таблицы: vlanMulticastTvEntry — 1.3.6.1.4.1.89.48.44.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.44.1.1.{ifIndex} u {vlan-id} \
1.3.6.1.4.1.89.48.44.1.2.50 i {createAndGo(4), destroy (6)}
```

Пример настройки multicast-tv vlan 622 на интерфейсе TenGigabitEthernet 1/0/23

Команда CLI: interface tengigabitethernet 1/0/23 switchport access multicast-tv vlan 622

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.44.1.1.23 u 622 \
1.3.6.1.4.1.89.48.44.1.2.23 i 4
```


Настройка режима работы multicast-tv vlan <customer/access/trunk/general> зависит от режима настройки порта, т.е. от команды switchport mode customer/access/trunk/general.

11.2 Функции ограничения multicast-трафика

<u>Создание multicast snooping profile</u>

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265.1.23.46.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.46.1.1.2.{Index of profile} s {profile name} \
1.3.6.1.4.1.35265. 1.23.46.1.1.3.{Index of profile} i {deny(1), permit(2)} \
1.3.6.1.4.1.35265. 1.23.46.1.1.4.{Index of profile} i {createAndGo(4),
destroy(6)}
```

Seltex

Пример создания профиля с именем IPTV (предположим, что профиль будет иметь порядковый номер 3)

Команда CLI:

multicast snooping profile IPTV

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.1.1.2.3 s IPTV \
1.3.6.1.4.1.35265.1.23.46.1.1.3.3 i 1 \
1.3.6.1.4.1.35265.1.23.46.1.1.4.3 i 4
```

Указание диапазонов Multicast-адресов в multicast snooping profile

MIB: eltIpMulticast.mib

```
Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265. 1.23.46.3
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.3.1.3.{index of rule}.{Index of profile} i
{ip(1),ipv6(2)} \
1.3.6.1.4.1.35265. 1.23.46.3.1.4.{index of rule}.{Index of profile} x {ip-aдрес
начала диапазона в шестнадцатеричном виде} \
1.3.6.1.4.1.35265. 1.23.46.3.1.5.{index of rule}.{Index of profile} x {ip-aдрес
конца диапазона в шестнадцатеричном виде} \
1.3.6.1.4.1.35265. 1.23.46.3.1.6.{index of rule}.{Index of profile} i
{createAndGo(4), destroy(6)}
```

Пример ограничения Multicast-групп 233.7.70.1-233.7.70.10 для профиля с именем IPTV (предположим, что профиль имеет порядковый номер 3. В первом профиле 2 правила, во втором — 1)

```
Komaндa CLI:
multicast snooping profile IPTV
match ip 233.7.70.1 233.7.70.10
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.3.1.3.4.3 i 1 \
1.3.6.1.4.1.35265.1.23.46.3.1.4.4.3 x E9074601 \
1.3.6.1.4.1.35265.1.23.46.3.1.5.4.3 x E907460A \
1.3.6.1.4.1.35265.1.23.46.3.1.6.4.3 i 4
```


index of rule — считается по сумме всех правил во всех профилях.

Назначение multicast snooping profile на порт

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265. 1.23.46.7.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.7.1.1.{ifIndex}.{Index of profile} i {ifIndex} \
1.3.6.1.4.1.35265. 1.23.46.7.1.2.{ifIndex}.{Index of profile} i {Index of
profile} \
1.3.6.1.4.1.35265. 1.23.46.7.1.3.{ifIndex}.{Index of profile} i
{createAndGo(4), destroy(6)}
```

Пример добавления профиля test (с индексом профиля 3) на интерфейс TenGigabitethernet 1/0/23

Команда CLI: interface TenGigabitethernet 1/0/23 multicast snooping add test

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.7.1.1.23.3 i 23 \
1.3.6.1.4.1.35265.1.23.46.7.1.2.23.3 i 3 \
1.3.6.1.4.1.35265.1.23.46.7.1.3.23.3 i 4

Настройка ограничения количества Multicast-групп на порту

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265.1.23.46.6.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.6.1.2.{ifIndex} i {MAX number}

Пример настройки ограничения в три Multicast-группы на интерфейсе TenGigabitethernet 1/0/23

Komaндa CLI: interface TenGigabitethernet 1/0/23 multicast snooping max-groups 3

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.46.6.1.2.23 i 3

12 ФУНКЦИИ УПРАВЛЕНИЯ

12.1 Механизм ААА

Добавление нового пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAALocalUserTable — 1.3.6.1.4.1.89.79.17

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.17.1.1.{number of letters}.{Login in DEC, каждая буква логина
oтделяется от следующей точкой} s {login} \
1.3.6.1.4.1.89.79.17.1.2.{number of letters}.{Login in DEC, каждая буква логина
oтделяется от следующей точкой} s "#{encoding password}" \
1.3.6.1.4.1.89.79.17.1.3.{number of letters}.{Login in DEC, каждая буква логина
oтделяется от следующей точкой} i {privelege level(1-15)} \
1.3.6.1.4.1.89.79.17.1.4.{number of letters}.{Login in DEC, каждая буква логина
oтделяется от следующей точкой} i {create and go(4)}

Пример добавления пользователя techsup с паролем password и уровнем привилегий 15

Komaндa CLI: username techsup password password privilege 15

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.17.1.1.7.116.101.99.104.115.117.112 s techsup \
1.3.6.1.4.1.89.79.17.1.2.7.116.101.99.104.115.117.112 s
"#5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8" \
1.3.6.1.4.1.89.79.17.1.3.7.116.101.99.104.115.117.112 i 15
\1.3.6.1.4.1.89.79.17.1.4.7.116.101.99.104.115.117.112 i 4
```


1. Логин переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII.

2. Пароль задается исключительно в шифрованном виде, пишется обязательно в кавычках, перед паролем добавляется #.

Настройка методов авторизации для login-пользователя

MIB: rlaaa.mib

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_c_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_c_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_c_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
```

```
1.3.6.1.4.1.89.79.15.1.10.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)} \
1.3.6.1.4.1.89.79.15.1.10.15.{"login_n_default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)}
```

Пример

```
Команда CLI:
aaa authentication login authorization default radius local
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \setminus
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 4 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 4 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 3 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 3 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.10
8.116 i 1 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.110.95.100.101.102.97.117.1
08.116 i 1
```


authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.15 разрешает прохождение авторизации для loginпользователя.

108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается login_c_default).

108.111.103.105.110.95.110.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается login_n_default).

<u>Удаление настройки методов авторизации для login-пользователя</u>

MIB: rlaaa.mib

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny(0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)}
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)}
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.10.15.{"login c default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)} \
1.3.6.1.4.1.89.79.15.1.10.15.{"login n default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)}
```

Aeltex

Пример удаления методов авторизации для login-пользователя

```
Команда CLI:
no aaa authentication login default
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 3 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 3 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 0 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.10
8.116 i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.110.95.100.101.102.97.117.1
08.116 i
```


authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.15 разрешает прохождение авторизации для login-пользователя.

108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается login_c_default).

108.111.103.105.110.95.110.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается login_n_default).

Настройка методов авторизации для enable-пользователя

MIB: rlaaa.mib

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6) }
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)}
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.10.16.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)} \setminus
1.3.6.1.4.1.89.79.15.1.10.16.{"login n default" in DEC, каждая буква логина
отделяется от следующей точкой} i {disable (0), enable(1)}
```

Пример настройки методов авторизации для enable-пользователя

```
Команда CLI:
aaa authentication enable authorization default radius enable
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
08.116 i 4 \
1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117.
108.116 i 4 \
1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
08.116 i 2 \
1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117.
108.116 i 2 \
1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.
108.116 i 1 \
1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117
.108.116 i 1
```


authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.16 разрешает прохождение авторизации для enable-пользователя.

101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается enable_c_default).

101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_n_default).

<u>Удаление настройки методов авторизации для enable-пользователя</u>

MIB: rlaaa.mib

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_c_default" in DEC, каждая буква

логина отделяется от следующей точкой} i {deny (0),

line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \

1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_n_default" in DEC, каждая буква

логина отделяется от следующей точкой} i {deny (0),

line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \

1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_c_default" in DEC, каждая буква

логина отделяется от следующей точкой} i {deny (0),

line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \

1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_n_default" in DEC, каждая буква

логина отделяется от следующей точкой} i {deny (0),

line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \

1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_n_default" in DEC, каждая буква

логина отделяется от следующей точкой} i {deny (0),

line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \

1.3.6.1.4.1.89.79.15.1.10.16.{"login_c_default" in DEC, каждая буква логина

отделяется от следующей точкой} i {disable (0), enable(1)} \
```

Aeltex

Пример удаления методов авторизации для enable-пользователя

```
Команда CLI:
no aaa authentication enable default
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
>1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.
108.116 i 2 \
>1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117
.108.116 i 2 \
>1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.
108.116 i 0 \
>1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117
.108.116 i 0 \
>1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117
.108.116 i 0 \
>1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.110.95.100.101.102.97.11
7.108.116 i 0
```


authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.16 разрешает прохождение авторизации для enable-пользователя.

101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 переводится из ASCIIтаблицы (расшифровывается enable_c_default).

101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_n_default).

12.2 Настройка доступа

Включение TELNET-сервера

MIB: radlan-telnet-mib.mib

Используемые таблицы: rlTelnetEnable — 1.3.6.1.4.1.89.58.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.58.7.0 i {on(1), off(2)}
```

Пример включения TELNET-сервера

```
Команда CLI:
ip telnet server
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.58.7.0 i 1
```

Включение SSH-сервера

MIB: rlssh.mib

Используемые таблицы: rlSshServerEnable — 1.3.6.1.4.1.89.78.2.102

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.78.2.102.0 i {on(1), off(2)}

Пример включения SSH-сервера

Команда CLI:

ip ssh server

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.78.2.102.0 i 1

Просмотр активных сессий

MIB: rIAAA.mib

Используемые таблицы: rlAAAUserInetName — 1.3.6.1.4.1.89.79.57.1.5

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.57.1.5

Пример просмотра активных сессий

Команда CLI: show users

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.79.57.1.5

13 ЗЕРКАЛИРОВАНИЕ ПОРТОВ

Настройка зеркалирования портов

MIB: rlspan.mib

destroy(6) }

Используемые таблицы: rlSpanDestinationTable — 1.3.6.1.4.1.89.219.2 rlSpanSourceTable — 1.3.6.1.4.1.89.219.3

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.219.2.1.2.{session id} i {ifindex dst port} \
1.3.6.1.4.1.89.219.2.1.3.{session id} i {span(1), rspan-start(2), rspan-
final(3)} \
1.3.6.1.4.1.89.219.2.1.4.{session id} i {monitor-only(1), network(2)} \
1.3.6.1.4.1.89.219.2.1.5.{session id} i {vlan id} \
1.3.6.1.4.1.89.219.2.1.6.{session id} i {createAndGo(4), destroy(6)}
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.219.3.1.4.{session id}.1.{ifindex src port} i {rx(1), tx(2),
both(3)} \
1.3.6.1.4.1.89.219.3.1.5.{session id}.1.{ifindex src port} i {createAndGo(4),
```

Пример зеркалирования трафика с интерфейса TenGigabitEthernet 1/0/16 на интерфейс TenGigabitEthernet 1/0/17

Команда CLI: monitor session 7 destination interface TenGigabitEthernet 1/0/17 monitor session 7 source interface TenGigabitEthernet 1/0/16 Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.219.2.1.2.7 i 17 \ 1.3.6.1.4.1.89.219.2.1.3.7 i 1 \ 1.3.6.1.4.1.89.219.2.1.4.7 i 1 \ 1.3.6.1.4.1.89.219.2.1.5.7 i 1 \ 1.3.6.1.4.1.89.219.2.1.6.7 i 4 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.219.3.1.4.7.1.16 i 3 \ 1.3.6.1.4.1.89.219.3.1.5.7.1.16 i 4

Настройка зеркалирования vlan

MIB: rlspan.mib

Используемые таблицы:

 $\label{eq:rlspanDestinationTable} rlSpanDestinationTable - 1.3.6.1.4.1.89.219.2 \\ rlSpanSourceTable - 1.3.6.1.4.1.89.219.3 \\$

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.2.1.16.22.1.3.1.1.4.{ifindex vlan}.{ifindex dst port} i
    {copyRxOnly(1)} \
    1.3.6.1.2.1.16.22.1.3.1.1.5.{ifindex vlan}.{ifindex dst port} i
    {createAndGo(4), destroy(6)}
```
Пример настройки зеркалирования vlan 622 на интерфейс TenGigabitEthernet 1/0/17

```
Команда CLI:

monitor session 7 destination interface TenGigabitEthernet 1/0/17

monitor session 7 source interface vlan 622

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.219.2.1.2.1 i 17 \

1.3.6.1.4.1.89.219.2.1.3.1 i 1 \

1.3.6.1.4.1.89.219.2.1.4.1 i 1 \

1.3.6.1.4.1.89.219.2.1.5.1 i 1 \

1.3.6.1.4.1.89.219.2.1.6.1 i 4

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.219.3.1.4.1.2.100621 i 1 \

1.3.6.1.4.1.89.219.3.1.5.1.2.100621 i 4
```

14 ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ

14.1 Диагностика оптического трансивера

<u>Снятие показаний DDM</u>

MIB: rlphy.mib

Используемые таблицы: rlPhyTestGetResult — 1.3.6.1.4.1.89.90.1.2.1.3

snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.90.1.2.1.3.{индекс порта}.{тип параметра}

```
Пример запроса показаний DDM с интерфейса TenGigabitethernet 1/0/23 (для всех параметров)
```

Команда CLI: show fiber-ports optical-transceiver interface TenGigabitethernet 1/0/23 Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.90.1.2.1.3.23

Тип параметра может принимать следующие значения:

rlPhyTestTableTransceiverTemp (5) — температура SFP-трансивера; rlPhyTestTableTransceiverSupply (6) — напряжение питания в мкВ; rlPhyTestTableTxBias (7) — ток смещения в мкА; rlPhyTestTableTxOutput (8) — уровень мощности на передаче в mDbm; rlPhyTestTableRxOpticalPower (9) — уровень мощности на приеме в mDbm.

Просмотр серийного номера SFP-трансивера

MIB: eltMes.mib

Используемые таблицы: eltMesPhdTransceiver — 1.3.6.1.4.1.35265.1.23.53

snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.53.1.1.1.6.{индекс порта}

Пример просмотра серийного номера SFP с интерфейса TenGigabitEthernet 1/0/23 (для всех параметров)

```
Команда CLI:
show fiber-ports optical-transceiver interface TenGigabitEthernet 1/0/23
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.53.1.1.1.6.23
```

15 ФУНКЦИИ ОБЕСПЕЧЕНИЯ БЕЗОПАСТНОСТИ

15.1 Функции обеспечения защиты портов

Ограничение количества МАС-адресов, изучаемых на Ethernet-портах

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.43.1.1.38.{ifIndex} i {max mac addresses}

Пример ограничения в 20 MAC-адресов на порт TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
port security max 20
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.38.23 i 20

Включение port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfPortLockIfRangeTable — 1.3.6.1.4.1.89.43.6

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.43.6.1.3.1 i {locked(1), unlocked(2)} \

1.3.6.1.4.1.89.43.6.1.4.1 i {discard(1), forwardNormal(2), discardDisable(3),

действие над пакетом, не попавшим под правила port security} \

1.3.6.1.4.1.89.43.6.1.5.1 i {true(1), false(2). Для отправки трапов} \

1.3.6.1.4.1.89.43.6.1.6.1 i {частота отправки трапов (сек)} \

1.3.6.1.4.1.89.43.6.1.2.1 x {ifindex в виде битовой маски}
```

Пример настройки port security для интерфейсов TenGigabitEthernet 1/0/21-23

```
Команда CLI:
interface range TenGigabitEthernet 1/0/21-23
port security discard trap 30
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.6.1.3.1 i 1 \
1.3.6.1.4.1.89.43.6.1.4.1 i 1 \
1.3.6.1.4.1.89.43.6.1.5.1 i 1 \
```

1.3.6.1.4.1.89.43.6.1.6.1 i 30 \ 1.3.6.1.4.1.89.43.6.1.2.1 x "00000E0000"

Методика расчета битовой маски приведена в разделе «Приложение А. Методика расчета битовой маски».

Установка режима работы port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.43.1.1.37.{ifIndex} i {disabled(1), dynamic(2), secure-
permanent(3), secure-delete-on-reset(4)}
```

Пример настройки режима ограничения по количеству изученных MAC-адресов на порту TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
port security mode max-addresses
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

1.3.6.1.4.1.89.43.1.1.37.23 i 2

Просмотр статуса port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockAdminStatus — 1.3.6.1.4.1.89.43.1.1.8

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.8
```

Пример просмотра статуса port security

```
Команда CLI:
show ports security
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.8
```

Просмотр типа port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfAdminLockAction — 1.3.6.1.4.1.89.43.1.1.20

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.20
```

Пример просмотра типа port security

```
Komaндa CLI:
show ports security
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.20
```

<u>Просмотр максимально заданного количества МАС-адресов, изучаемых на Ethernet</u> <u>портах</u>

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockMaxMacAddresses — 1.3.6.1.4.1.89.43.1.1.38

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.38

Пример просмотра максимально заданного количества МАС-адресов, изучаемых на Ethernetпортах

Команда CLI: show ports security

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

1.3.6.1.4.1.89.43.1.1.38

Перевод порта в режим изоляции и внутри группы портов

MIB: rlprotectedport.mib

Используемые таблицы: rlProtectedPortsTable — 1.3.6.1.4.1.89.132.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.132.1.1.1.{Ifindex} i {not-protected(1), protected(2)}
```

Пример настройки изоляции на портах TenGigabitEthernet 1/0/21 и TenGigabitEthernet 1/0/23

```
Команда CLI:
interface range TenGigabitEthernet 1/0/23
switchport protected-port
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.132.1.1.1.21 i 2 \ 1.3.6.1.4.1.89.132.1.1.1.23 i 2

Создание статической привязки в МАС-таблице

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qStaticUnicastTable — 1.3.6.1.2.1.17.7.1.3.1

```
snmpset -v2c -c <community> -t 20 -r 0 <IP address> \
1.3.6.1.2.1.17.7.1.3.1.1.4.{vlan id}.{mac address(DEC). Байты MAC-адреса
разделяются точками}.{ifIndex} i {other(1), invalid(2), permanent(3),
deleteOnReset(4), deleteOnTimeout(5)}
```

Пример привязки MAC-адреса 00:22:68:7d:0f:3f в vlan 622 к интерфейсу TenGigabitethernet 1/0/23 в режиме secure (по умолчанию используется режим permanent)

Команда CLI:

mac address-table static 00:22:68:7d:0f:3f vlan 622 interface tenGigabitethernet
1/0/23 secure

Команда SNMP:

snmpset -v2c -c private -t 20 -r 0 192.168.1.30 \
1.3.6.1.2.1.17.7.1.3.1.1.4.622.0.34.104.125.15.63.23 i 1

Просмотр МАС-таблицы

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qTpFdbTable — 1.3.6.1.2.1.17.7.1.2.2

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.2.1.17.7.1.2.2

Пример просмотра МАС-таблицы

```
Komaндa CLI:
show mac address-table
Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2
```

Создание статической привязки в ARP-таблице

MIB: RFC1213-MIB

Используемые таблицы: ipNetToMediaTable — 1.3.6.1.2.1.4.22

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.22.1.2.{vlan id}.{IP address} x {"MAC address"} \
1.3.6.1.2.1.4.22.1.3.{vlan id}.{IP address} a {IP address} \
1.3.6.1.2.1.4.22.1.4.{vlan id}.{IP address} i 4
```

Пример привязки ір 192.168.1.21 и MAC aa:bb:cc:dd:ee:ff к vlan 1

Команда CLI: arp 192.168.1.21 aa:bb:cc:dd:ee:ff vlan 1

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.4.22.1.2.100000.192.168.1.21 x "aabbccddeeff" \
1.3.6.1.2.1.4.22.1.3.100000.192.168.1.21 a 192.168.1.21 \
1.3.6.1.2.1.4.22.1.4.100000.192.168.1.21 i 4
```


1. Для удаления привязки необходимо в поле 1.3.6.1.2.1.4.22.1.4 присвоить значение 2. 2. IP-адрес устройства и IP-адрес создаваемой статической записи в ARP-таблице должны находиться в одной подсети.

<u>Просмотр ARP-таблицы</u>

MIB: RFC1213-MIB.mib, Q-BRIDGE-MIB.mib

Используемые таблицы:

pNetToMediaPhysAddress — 1.3.6.1.2.1.4.22.1.2 dot1qTpFdbEntry — 1.3.6.1.2.1.17.7.1.2.2.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.22.1.2.{(2) ip address, (3)MAC address}

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.2.2.1

Пример просмотра ARP-таблицы

Команда CLI: show arp

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.4.22.1.2
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2.1

1. Значение таблицы pNetToMediaPhysAddress отображает IP-адрес и MAC-адрес VLAN.

2. Значение таблицы dot1qTpFdbEntry — отображает статус и идентификационный номер порта, с которого доступно устройство.

15.2 Контроль протокола DHCP и опции 82

Включение/выключение DHCP-сервера на коммутаторе

MIB: rldhcp.mib

Используемые таблицы: rlDhcpRelayInterfaceListTable — 1.3.6.1.4.1.89.38.29

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.38.30.0 i {true(1), false(2)}

Пример включения DHCP-сервера на коммутаторе

Команда CLI: ip dhcp server

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.38.30.0 i 1

Просмотр записей таблицы dhcp snooping

MIB: rlBridgeSecurity.mib

Используемые таблицы: rllpDhcpSnoopEntry — 1.3.6.1.4.1.89.112.1.11.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.11.1
```

Пример просмотра таблицы dhcp snooping

Komaндa CLI: Show ip dhcp snooping binding

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.11.1

Включение/выключение dhcp snooping глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnable — 1.3.6.1.4.1.89.112.1.2

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.2.0 i {enable(1), disable(2)}

Пример глобального включения dhcp snooping

```
Команда CLI:
ip dhcp snooping
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.2.0 i 1
```

Включение/выключение dhcp snooping во vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnableVlanTable — 1.3.6.1.4.1.89.112.1.12

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.1.12.1.2.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения dhcp snooping в vlan 622

```
Команда CLI:
ip dhcp snooping vlan 622
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.12.1.2.622 i 4
```

Настройка IP DHCP information option

MIB: rlbridgesecurity.mib

Используемые таблицы: rllpDhcpOpt82InsertionEnable — 1.3.6.1.4.1.89.112.1.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.8.0 i {enable(1), disable(2)}
```

Пример

```
Команда CLI:
ip dhcp information option
Команда SNMP:
```

```
snmpset -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.112.1.8.0 i 1
```

Настройка доверенного порта DHCP

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopTrustedPortTable — 1.3.6.1.4.1.89.112.1.13

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.112.1.13.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса TenGigabitEthernet 1/0/23

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
ip dhcp snooping trust
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.13.1.2.23 i 4
```

Настройка DHCP relay во VLAN

MIB: rldhcp.mib

Используемые таблицы:

rlDhcpRelayInterfaceListVlanId1To1024 — 1.3.6.1.4.1.89.38.29.1.3 rlDhcpRelayInterfaceListVlanId1025To2048 — 1.3.6.1.4.1.89.38.29.1.4 rlDhcpRelayInterfaceListVlanId2049To3072 — 1.3.6.1.4.1.89.38.29.1.5 rlDhcpRelayInterfaceListVlanId3073To4094 — 1.3.6.1.4.1.89.38.29.1.6

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.38.29.1.3.1 x {битовая маска}
```

Пример настройки IP DHCP relay enable на vlan 1

```
Команда CLI:
Interface vlan 1
ip dhcp relay enable
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.29.1.3.1 x 80000000000
```

Пример настройки IP DHCP relay enable на 1026 vlan

Команда CLI: Interface vlan 1026 ip dhcp relay enable

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.29.1.4.1 x 40000000000
```


Пример расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

15.3 Защита IP-адреса клиента (IP source Guard)

Включение/отключение ip source quard глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardEnable — 1.3.6.1.4.1.89.112.2.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.2.2.0 i {enable(1), disable(2)}
```

Пример глобального включения ip source guard

```
Команда CLI:
ip source-guard
```

Aeltex

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.2.2.0 i 1
```

Создание статической привязки ip source quard

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopStaticTable — 1.3.6.1.4.1.89.112.1.10

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.112.1.10.1.3.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса

отделяется от предыдущего точкой} a {ip address (DEC)} \

1.3.6.1.4.1.89.112.1.10.1.4.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса

отделяется от предыдущего точкой} i {ifIndex} \

1.3.6.1.4.1.89.112.1.10.1.5.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса

отделяется от предыдущего точкой} i {createAndGo(4), destroy(6)}
```

Пример привязки МАС-адреса 00:11:22:33:44:55 к IP 192.168.1.34, vlan 622, интерфейсу TenGigabitEthernet 1/0/23

Команда CLI:

```
ip source-guard binding 00:11:22:33:44:55 622 192.168.1.34 TenGigabitEthernet 1/0/23
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.10.1.3.622.0.17.34.51.68.85 a 192.168.1.34 \
1.3.6.1.4.1.89.112.1.10.1.4.622.0.17.34.51.68.85 i 23 \
1.3.6.1.4.1.89.112.1.10.1.5.622.0.17.34.51.68.85 i 4
```

Включение/выключение ip source quard на порту

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardPortTable — 1.3.6.1.4.1.89.112.2.5

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.2.5.1.2.<ifIndex> i {createAndGo(4), destroy(6)}
```

Пример включения ip source guard на интерфейсе TenGigabitEthernet 1/0/23

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
ip source-guard
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.2.5.1.2.23 i 4
```

15.4 Контроль протокола ARP (ARP Inspection)

Включение/выключение ARP Inspection глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnable — 1.3.6.1.4.1.89.112.3.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.3.2.0 i {enable(1), disable (2)}
```

Пример глобального включения arp inspection

```
Команда CLI:
ip arp inspection
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.2.0 i 1
```

Включение/выключение ARP Inspection во VLAN

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnableVlanTable — 1.3.6.1.4.1.89.112.3.6

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.3.6.1.3.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения arp inspection в vlan 622

```
Команда CLI: ip arp inspection vlan 622
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.3.6.1.3.622 i 4

Настройка доверенного порта ARP Inspection

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectTrustedPortRowStatus — 1.3.6.1.4.1.89.112.3.7.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.3.7.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса TenGigabitEthernet 1/0/23

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
ip arp inspection trust
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.7.1.2.23 i 4
```

Привязка ip arp inspection list к vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectAssignedListName — 1.3.6.1.4.1.89.112.3.6.1.2

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.112.3.6.1.2.{vlan id} s {list name}

Пример привязки листа с именем test к vlan 622

```
Команда CLI:
ip arp inspection list assign 100 test
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.6.1.2.622 s test
```

15.5 Проверка подлинности клиента на основе порта (802.1x)

Включение аутентификации 802.1х на коммутаторе

MIB: dot1xPaeSystem.mib

Используемые таблицы: dot1xPaeSystemAuthControl — 1.0.8802.1.1.1.1.1.1

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.1.0 i {enabled(1), disabled(2)}
```

Пример включения 802.1х

```
Команда CLI:
dot1x system-auth-control
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.1.0 i 1
```

<u>Включение периодической повторной проверки подлинности (переаутентификации)</u> клиента

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthReAuthEnabled — 1.0.8802.1.1.1.1.2.1.1.13

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.13.{ifIndex} i {true(1), false(2)}
```

Пример включения периодической повторной проверки подлинности клиента на интерфейсе TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface tengigabitethernet 1/0/23
dot1x reauthentication
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.13.23 i 1
```

Установка периода между повторными проверками подлинности

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.12

snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.12.{ifIndex} u {size 300-4294967295}

Пример установки периода в 300 с между повторными проверками на интерфейсе TenGigabitEthernet 1/0/23

Komaндa CLI: interface tengigabitethernet 1/0/23 dot1x timeout reauth-period 300

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.0.8802.1.1.1.1.2.1.1.12.23 и 300

Настройка режимов аутентификации 802.1х на интерфейсе

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.6

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.6.{ifIndex} i {force-Unauthorized(1), auto(2), force-
Authorized(3)}
```

Пример настройки аутентификации 802.1х в режиме auto на интерфейсе TenGigabitEthernet 1/0/23

Команда CLI: interface tengigabitethernet 1/0/23 dot1x port-control auto

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.0.8802.1.1.1.1.2.1.1.6.23 i 2

Включение аутентификации, основанной на МАС-адресах пользователей

MIB: radlan-dot1x-mib.mib

Используемые таблицы: rldot1xAuthenticationPortTable — 1.3.6.1.4.1.89.95.10.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.95.10.1.1.{ifIndex} i {destroy(1), mac-and-802.1x(2), mac-
only(3)}
```

Пример включения аутентификации, основанной только на МАС-адресах на интерфейсе TenGigabitEthernet 1/0/23

```
Команда CLI:
interface tengigabitethernet 1/0/23
dot1x authentication mac
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.95.10.1.1.23 i 3
```

Разрешение наличия одного/нескольких клиентов на авторизованном порту 802.1Х

MIB: rlInterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1.1.30

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.30.{ifIndex} i {single(1), none(2), multi-sessions(3)}

Пример разрешения наличия нескольких клиентов на интерфейсе TenGigabitethernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
dot1x host-mode multi-sessions
```

```
Команда SNMP:
```

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.30.23 i 3

<u>Включение одного или двух методов проверки подлинности, авторизации и учета (ААА)</u> для использования на интерфейсах IEEE 802.1x

MIB: rlaaa.mib

Используемые таблицы: rlAAAEapMethodListTable — 1.3.6.1.4.1.89.97.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.97.1.1.1.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} s {authentication list} \1.3.6.1.4.1.89.97.1.1.2.7.{"default"
in DEC, каждая буква отделяется от следующей точкой} i {Deny(0), radius(1),
none(2)} \
1.3.6.1.4.1.89.97.1.1.3.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} i {Deny(0), radius(1), none(2)} \
1.3.6.1.4.1.89.97.1.1.7.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} i 1
```

Пример включения списка RADIUS-серверов для аутентификации пользователя

Команда CLI: aaa authentication dot1x default radius none

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.97.1.1.1.7.100.101.102.97.117.108.116 s default \
1.3.6.1.4.1.89.97.1.1.2.7.100.101.102.97.117.108.116 i 1 \
1.3.6.1.4.1.89.97.1.1.3.7.100.101.102.97.117.108.116 i 2 \
1.3.6.1.4.1.89.97.1.1.7.7.100.101.102.97.117.108.116 i 1
```


1) Для того, чтобы вернуться к настройкам по умолчанию, достаточно значения поменять на Deny(0).

2) Default переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII.

Добавление указанного сервера в список используемых RADIUS-серверов

MIB: rlaaa.mib

Используемые таблицы: rlRadiusServerInetTable — 1.3.6.1.4.1.89.80.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.80.8.1.2.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} x "{ip adress(HEX)}" \
1.3.6.1.4.1.89.80.8.1.1.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {ipv4(1), ipv6(2), ipv4z(3)} \
1.3.6.1.4.1.89.80.8.1.3.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1812} \
1.3.6.1.4.1.89.80.8.1.4.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1812} \
1.3.6.1.4.1.89.80.8.1.4.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1813} \
1.3.6.1.4.1.89.80.8.1.9.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} s "#{encoding key}" \
1.3.6.1.4.1.89.80.8.1.13.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {createAndGo(4), destroy(6)}
```

Пример

Команда CLI: radius-server host 192.168.1.10 encrypted key da90833f59be Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.80.8.1.2.1.4.192.168.1.10.1812.1813 x "c0a8010a" \ 1.3.6.1.4.1.89.80.8.1.1.1.4.192.168.1.10.1812.1813 i 1 \ 1.3.6.1.4.1.89.80.8.1.3.1.4.192.168.1.10.1812.1813 i 1812 \ 1.3.6.1.4.1.89.80.8.1.4.1.4.192.168.1.10.1812.1813 i 1812 \ 1.3.6.1.4.1.89.80.8.1.4.1.4.192.168.1.10.1812.1813 i 1813 \ 1.3.6.1.4.1.89.80.8.1.9.1.4.192.168.1.10.1812.1813 s "#da90833f59be" \ 1.3.6.1.4.1.89.80.8.1.13.1.4.192.168.1.10.1812.1813 i 4

15.6 Механизм обнаружения петель (loopback-detection)

Глобальное включение loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdEnable — 1.3.6.1.4.1.89.127.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.1.0 i { true(1), false(2) }

Пример глобального включения loopback-detection

Команда CLI: loopback-detection enable

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.127.1.0 i 1

Изменение интервала loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdDetectionInterval — 1.3.6.1.4.1.89.127.2

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.2.0 I { seconds 1-60 }

Пример изменения интервала loopback-фреймов на 23 секунды

```
Команда CLI:
loopback-detection interval 23
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.2.0 i 23
```

Изменение режима работы loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdMode — 1.3.6.1.4.1.89.127.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.3.0 i {source-mac-addr(1),base-mac-addr(2), multicast-mac-
addr(3),broadcast-mac-addr (4) }
```

Пример изменения режима работы loopback-detection на source-mac-addr

Команда CLI: loopback-detection mode src-mac-addr

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.127.3.0 i 1

Включение/отключение loopback-detection на интерфейсах

MIB: rllbd.mib

```
Используемые таблицы: rlLbdPortAdminStatus — 1.3.6.1.4.1.89.127.4.1.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.4.1.1.{ifindex} i { enable(1), disable(2)}
```

Пример включения loopback-detection на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
loopback-detection enable
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.4.1.1.23 i 1
```

Просмотр рабочего состояния loopback-detection на интерфейсе

MIB: rllbd.mib

Используемые таблицы: rlLbdPortOperStatus — 1.3.6.1.4.1.89.127.4.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.4.1.2.{ifindex}
```

Пример просмотра состояния loopback-detection на интерфейсе TenGigabitethernet 1/0/23

Команда CLI: show loopback-detection TenGigabitethernet 1/0/23 Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

1.3.6.1.4.1.89.127.4.1.2.23

При использовании SNMP-команды:

1 — состояние inactive,

- 2 состояние active,
- 3 loopdetected.

Просмотр заблокированных VLAN в режиме vlan-based

MIB: rllbd.mib

Используемые таблицы: eltMesLdb — 1.3.6.1.4.1.35265.1.23.127

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.127.4.1.3.{ifindex}.{vlan}
```

Пример просмотра состояния vlan 2 на порту TenGigabitethernet 1/0/23

```
Команда CLI: show loopback-detection TenGigabitethernet 1/0/2
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.127.4.1.3.23.622

Возможные состояния:

1 — active, 2 — blocked.

15.7 Контроль широковещательного шторма (storm-control)

Настройка storm-control на интерфейсе

MIB: RADLAN-MIB

Используемые таблицы: rlStormCtrl — 1.3.6.1.4.1.89.77

```
snmpset -v2c -c <community> <IP address> \
```

Aeltex

1.3.6.1.4.1.89.77.12.1.2.{ifindex}.{broadcast(1),multicastRegistred(2),multicas tUnregistred(3), multicastAll(4), unknownUnicast(5)} u {rate} \ 1.3.6.1.4.1.89.77.12.1.3.{ifindex}.{broadcast(1),multicastRegistred (2),multicastUnregistred(3),multicastAll(4),unknownUnicast(5)} I kiloBitsPerSecond(1),precentaged(2)} \ 1.3.6.1.4.1.89.77.12.1.4.{ifindex}.{broadcast(1),multicastRegistred (2),multicastUnregistred(3), multicastAll(4), unknownUnicast(5)} i {none(1),trap(2),shutdown(3),trapAndShutdown(4)}

Пример включения storm-control для broadcast-трафика на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
storm-control broadcast kbps 10000 trap shutdown
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.3.23.1 i 1 \
1.3.6.1.4.1.89.77.12.1.2.23.1 u 1000 \
1.3.6.1.4.1.89.77.12.1.4.23.1 i
```

Пример отключения storm-control для broadcast-трафика на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
```

```
interface TenGigabitethernet 1/0/23
no storm-control broadcast
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.1 u 0
```

Включить/выключить storm-control для unknown unicast-трафика

MIB: radlan-stormctrl.mib

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

```
snmpset -v2c -c <community> <IP address> \
iso.3.6.1.4.1.89.77.12.1.2.{ifIndex}.5 u {Kbps,отключить (0)}
```

Пример включения контроля неизвестного одноадресного трафика до 50 кбит/с

```
Команда CLI:
interface TenGigabitethernet 1/0/23
storm-control unicast Kbps 50
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.5 u 50
```

16 КОНФИГУРИРОВАНИЕ ІР И МАС АСР (СПИСКИ КОНТРОЛЯ ДОСТУПА)

Создание mac access-list

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

Команда CLI: mac access-list extended 7-mac

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.207 s "7-mac" \
1.3.6.1.4.1.89.88.7.1.3.207 i 1 \
1.3.6.1.4.1.89.88.7.1.4.207 i 4
```

<u>Создание ip access-list (ACL)</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания IP ACL с индексом 107

```
Команда CLI:
ip access-list extended 7-ip
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.107 s "7-ip" \
1.3.6.1.4.1.89.88.7.1.3.107 i 2 \
1.3.6.1.4.1.89.88.7.1.4.107 i 4
```


Пример наполнения ACL правилами подробно рассмотрен в разделе «Приложение Б. Пример создания типового IP ACL».

<u>Привязка IP или MAC ACL к порту</u>

MIB: qosclimib.mib

Используемые таблицы:

rlQoslfAclIn — 1.3.6.1.4.1.89.88.13.1.14 rlQoslfPolicyMapStatus — 1.3.6.1.4.1.89.88.13.1.13 snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.14.{ifIndex}.2 i {Index-of-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1

Пример назначения правила с индексом 107 (название ACL 7-ip) на порт TenGigabitEthernet 1/0/23

```
Команда CLI:
```

```
interface TenGigabitEthernet 1/0/23
service-acl input 7-ip
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.23.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.23.2 i 1
```


Для удаления ACL с порта достаточно индекс ACL заменить на 0. snmpset -c -v2c private 192.168.1.301.3.6.1.4.1.89.88.13.1.14.50.2 i 0 1.3.6.1.4.1.89.88.13.1.13.50.2 i 1

<u>Привязка IP и MAC ACL к порту</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosIfAclIn — 1.3.6.1.4.1.89.88.13.1.14 rlQosIfIpv6AclIn — 1.3.6.1.4.1.89.88.13.1.201.3.6.1.4.1.89.88.13.1.20 rlQosIfPolicyMapStatus — 1.3.6.1.4.1.89.88.13.1.13

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.14.{Ifindex}.2 i {Index-of-mac-acl} \
1.3.6.1.4.1.89.88.13.1.20.{Ifindex}.2 i {Index-of-ip-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1
```

Пример назначения правила с индексом 107 и 207 (название ACL 7-ір для IP ACL и 7-тас для MAC ACL) на порт TenGigabitEthernet 1/0/23 (Ifindex 23)

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
service-acl input 7-mac 7-ip
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.23.2 i 207 \
1.3.6.1.4.1.89.88.13.1.20.23.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.23.2 i 1
```


Для удаления ACL с порта достаточно индекс IP и MAC ACL заменить на 0.

snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.14.23.2 i 0 \ 1.3.6.1.4.1.89.88.13.1.20.23.2 i 0 \ 1.3.6.1.4.1.89.88.13.1.13.23.2 i 1

Создание policy-тар и привязка к нему ACL

MIB: qosclimib.mib

Используемые таблицы:

rlQosClassMapTable — 1.3.6.1.4.1.89.88.9 rlQosPolicyMapTable — 1.3.6.1.4.1.89.88.11 rlQosPolicyClassPriorityRefTable — 1.3.6.1.4.1.89.88.39

Схема: создание policy-map проводится в несколько запросов

1. Создаем class и назначаем ему свойства

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.2.{index-of-class} s "{name-of-class-map}" \
1.3.6.1.4.1.89.88.9.1.3.{index-of-class} i {matchAll (1)} \
1.3.6.1.4.1.89.88.9.1.7.{index-of-class} i {index-of-acl} \
1.3.6.1.4.1.89.88.9.1.9.{index-of-class} i {Mark vlan disable (1), enable(2)} \
1.3.6.1.4.1.89.88.9.1.13.{index-of-class} i {create and go(4),destroy(6)}
```

2. Создаем policy-map и включаем его

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.11.1.2.{index-of-policy-map} s {name-of-policy-map} \
1.3.6.1.4.1.89.88.11.1.3.{index-of-policy-map} i {createAndGo(4), destroy(6)}
```

3. Привязываем class-map к policy-map

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.39.1.2.1.{index-of-class} i {index-of-class} \
1.3.6.1.4.1.89.88.39.1.3.1.{index-of-class} i {index-of-policy-map}

4. Создаем ограничение скорости для class-map

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.10.1.2.{Number-of-class-in-policy} s {Policer-cm-20} \
1.3.6.1.4.1.89.88.10.1.3.{Number-of-class-in-policy} i {single(1),
aggregate(2)} \
1.3.6.1.4.1.89.88.10.1.4.{Number-of-class-in-policy} i {rate} \
1.3.6.1.4.1.89.88.10.1.5.{Number-of-class-in-policy} i {burst} \
1.3.6.1.4.1.89.88.10.1.6.{Number-of-class-in-policy} i {none(1), drop(2),
remark(3)} \
1.3.6.1.4.1.89.88.10.1.8.{Number-of-class-in-policy} i {createAndGo(4),
destroy(6)}
```

5. Привязываем ограничение скорости к class-map

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.6.{index-of-class} i {Number-of-class-in-policy}

6. Задаем значение метки трафику DSCP, соѕ или указываем выходную очередь 1.3.6.1.4.1.89.88.233

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.4.{index-of-class} i {setDSCP(3), setQueue(4), setCos(5)}
\
1.3.6.1.4.1.89.88.9.1.5.{index-of-class} i {Mark value of DSCP/queue/cos(DEC)}
```

Пример: IP ACL c index-of-acl = 107 привязывается к class-map с именем test и выставляется метка DSCP = 36(DEC), cos = 4 и queue = 8 для трафика, подпавшего под IP ACL. Class test привязывается к policymap с именем test1.

Команда CLI: qos advanced ip access-list extended 7-ip permit ip any any exit class-map test match access-group 7-ip exit policy-map test1 class test set dscp 36 set queue 8 set cos 4 police 97000 524288 exceed-action drop exit exit Команда SNMP: snmpset -v2c -c private 192.168.1.30 $\$ 1.3.6.1.4.1.89.88.9.1.2.20 s "test" \ 1.3.6.1.4.1.89.88.9.1.3.20 i 1 \ 1.3.6.1.4.1.89.88.9.1.7.20 i 107 \ 1.3.6.1.4.1.89.88.9.1.9.20 i 1 \ 1.3.6.1.4.1.89.88.9.1.13.20 i 4 snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.88.11.1.2.1 s "test1" \ 1.3.6.1.4.1.89.88.11.1.3.1 i 4 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.39.1.2.1.20 i 20 \ 1.3.6.1.4.1.89.88.39.1.3.1.20 i 1 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.10.1.2.1 s "Policer-cm-20" \ 1.3.6.1.4.1.89.88.10.1.3.1 i 1 \ 1.3.6.1.4.1.89.88.10.1.4.1 u 97000 \ 1.3.6.1.4.1.89.88.10.1.5.1 u 524288 \ 1.3.6.1.4.1.89.88.10.1.6.1 i 2 \ 1.3.6.1.4.1.89.88.10.1.8.1 i 4 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.9.1.6.20 i 1 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.9.1.4.20 i 3 \ 1.3.6.1.4.1.89.88.9.1.5.20 i 36 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.9.1.4.20 i 4 \ 1.3.6.1.4.1.89.88.9.1.5.20 i 8 snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.9.1.4.20 i 5 \ 1.3.6.1.4.1.89.88.9.1.5.20 i 4

<u>Назначение Policy-тар на порт</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosIfPolicyMapPointerIn — 1.3.6.1.4.1.89.88.13.1.3

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.88.13.1.3.{Ifindex}.2 i {Index-of-policy-map}

Пример назначения policy-map с индексом 1 на порт TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
service-policy input test1
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.3.23.2 i 1

Aeltex

17 КОНФИГУРАЦИЯ ЗАЩИТЫ ОТ DOS-ATAK

Включение security-suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteGlobalEnable — 1.3.6.1.4.1.89.120.1

snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.1.0 i {enableglobal-rules-only (1), enable-all-rules-types (2), disable (3)}

Пример включения класса команд security-suite для всех правил

```
Команда CLI:
security-suite enable
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.1.0 i 2
```

Настройка режима работы security suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteSynProtectionMode — 1.3.6.1.4.1.89.120.10

snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.10.0 i {disabled
(1), report (2), block (3)}

Пример включения режима report

```
Kоманда CLI:
security-suite syn protection mode report
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.10.0 i 2

Выключить защиту от TCP-пакетов с одновременно установленными SYN- и FIN- флагами

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteDenySynFinTcp — 1.3.6.1.4.1.89.120.9

```
snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.9.0 i {(deny (1),
permit (2)}
```

Пример включения режима report

```
Команда CLI:
security-suite deny syn-fin
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.9.0 i 2
```

18 КАЧЕСТВО ОБСЛУЖИВАНИЯ — QOS

18.1 Настройка QoS

Ограничение исходящей скорости на Ethernet-портах

MIB: qosclimib.mib

Используемые таблицы: rlQosIfPolicyEntry — 1.3.6.1.4.1.89.88.13.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.13.1.6.{ifindex порта}.2 i {disable(1),enable
    (1)} \
    1.3.6.1.4.1.89.88.13.1.7.{ifindex порта}.2 i {traffic-shape} \
    1.3.6.1.4.1.89.88.13.1.8.{ifindex порта}.2 i {Burst size in bytes}
```

Пример ограничения исходящей скорости на порту до значения 20 Мбит/с

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
traffic-shape 20480 500000
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.6.23.2 i 2 \
1.3.6.1.4.1.89.88.13.1.7.23.2 i 20480 \
1.3.6.1.4.1.89.88.13.1.8.23.2 i 500000
```

Ограничение входящей скорости на Ethernet-портах

MIB: RADLAN-STORMCTRL-MIB

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.77.12.1.2.{ifIndex}.6 u {limit} \
1.3.6.1.4.1.89.77.12.1.5.{ifIndex}.6 u {Burst size in bytes}
```

Пример ограничения входящей скорости на интерфейсе TenGigabitEthernet 1/0/23 до значения 10 Мбит/с

Команда CLI:

```
interface TenGigabitEthernet 1/0/23
rate-limit 10240 burst 500000
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.6 u 10240 \
1.3.6.1.4.1.89.77.12.1.5.23.6 u 500000

Для отключения rate-limit на интерфейсе необходимо выполнить (на примере интерфейса TenGigabitethernet 1/0/23):

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.77.12.1.2.23.6 u 0 1.3.6.1.4.1.89.77.12.1.5.23.6 u 128000

Создание профиля gos tail-drop и расширение дескрипторов для очередей

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropProfileQueueTable — 1.3.6.1.4.1.35265.1.23.12.1.1.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.1.4.{Номер профиля (1-4)}.{номер очереди(1-8)}
i {size (0-11480)}
```

Пример

```
Komaндa CLI:
qos tail-drop profile 2
queue 1 limit 900
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.1.1.4.2.1 i 900
```


Чтобы вернуться к настройкам по умолчанию достаточно установить значение параметра равным 12.

Установка размера пакетного разделяемого пула для порта

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropProfileTable — 1.3.6.1.4.1.35265.1.23.12.1.1.4
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2{номер профиля (1-4)} i {size (0-11480)}
```

Пример

```
Komaндa CLI:
qos tail-drop profile 2
port-limit 900
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2.2 i 900

Назначение созданного профиля на интерфейс

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropIfConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.2
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.{IfIndex} і {номер профиля (1-4)}
```

Пример

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
qos tail-drop profile 2
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.23 i 2
```

Просмотр отображения глобальных лимитов, дескрипторов, буферов

MIB: ELTEX-MES-QOS-TAIL-DROP-MIB

Используемые таблицы: eltQosTailDropConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.3

```
snmpwalk -v2c -c <community> <ip address> \
1.3.6.1.4.1.35265.1.23.12.1.1.3
```

Пример

Komaндa CLI: show qos tail-drop

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.12.1.1.3

<u>Просмотр таблицы вывода текущих аллоцированных ресурсов qos (лимитов, дескрипторов, буферов)</u>

MIB: ELTEX-MES-QOS-TAIL-DROP-MIB

Используемые таблицы: eltQosTailDropStatusTable — 1.3.6.1.4.1.35265.1.23.12.1.2.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.2.1

Пример

Команда CLI: show qos tail-drop

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.2.1

Просмотр Tail Drop счетчиков по очередям

MIB: RADLAN-COPY-MIB

Используемые таблицы: eltMesCountersMIB — 1.3.6.1.4.1.35265.1.23.1.8

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.8.1.2.1.1.1.7.{ifIndex}.{1-8}.0
```

Пример просмотра счетчиков для первой очереди

Komaндa CLI: show interface TenGigabitethernet 1/0/23

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.8.1.2.1.1.1.7.23.1.0

18.2 Статистика QoS

<u>Включение/выключение QoS-статистики</u>

MIB: qosclimib.mib

Используемые таблицы: eltCountersQosStatisticsEnable — 1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1

snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1.0 і {включить(1), выключить(2)}

Пример настройки статистики QoS

Команда CLI: qos statistics interface

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1.0 i 1
```

Просмотр счетчиков QoS-статистики

MIB: qosclimib.mib

Используемые таблицы: rlInterfaceQueueStatisticsTxPackets — 1.3.6.1.4.1.89.233.2.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.233.2.1.{Номер счетчика}.{ifIndex}.{Номер очереди}
```

Пример снятия показаний счетчика TxPackets на 4 очереди интерфейса TenGigabitEthernet 1/0/23

```
Команда CLI:
show qos statistics interface
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```

1.3.6.1.4.1.89.233.2.1.4.23.4

Возможные номера счетчиков:

- 1. Все счетчики ()
- 2. Счетчик Queue(2)
- 3. Счетчик txpackets(4)
- 4. Счетчик TxBytes(5)
- 5. Счетчик droppedpackets(6)
- 6. Счетчик DroppedBytes(7)

Пример очистки счетчиков QoS-статистики

MIB: qosclimib.mib

Используемые таблицы: rlInterfaceQueueStatisticsClear — 1.3.6.1.4.1.89.233.1.0

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.233.1.0 i 1
```

Пример

Команда CLI: clear qos statistics

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.233.1.0 i 1

19 МАРШРУТИЗАЦИЯ

19.1 Статическая маршрутизация

Просмотр таблицы маршрутизации

MIB: IP-FORWARD-MIB

Используемые таблицы: ipCidrRouteTable — 1.3.6.1.2.1.4.24.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.4.24.4
```

Пример

Команда CLI: show ip route

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.4.24.4

Просмотр статических маршрутов

MIB: rlip.mib

Используемые таблицы: rllpStaticRouteTable — 1.3.6.1.4.1.89.26.17.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.17.1
```

Пример

Komaндa CLI: show running-config routing

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.17.1
```

19.2 Динамическая маршрутизация

<u>Просмотр соседства OSPF</u>

MIB: rlip.mib

Используемые таблицы: rlOspfNbrTable — 1.3.6.1.4.1.89.210.11

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.210.11
```

Пример

Команда CLI: show ip ospf neighbor

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.210.11

20 КОНФИГУРАЦИЯ VXLAN

Создание VXLAN-инстанса

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1, eltexEvpnVxlanFirstFreeIndex - 1.3.6.1.4.1.35265.56.1.1.3

```
snmpget -v2c -c <community> <IP address> 1.3.6.1.4.1.35265.56.1.1.3
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.56.1.1.1.1.3.{index} i { adminStatusUp(1),
adminStatusDown(2) } \
1.3.6.1.4.1.35265.56.1.1.1.1.4.{index} i { vni } \
1.3.6.1.4.1.35265.56.1.1.1.1.5.{index} i { vlan } \
1.3.6.1.4.1.35265.56.1.1.1.1.6.{index} s { vxlan_name } \
1.3.6.1.4.1.35265.56.1.1.1.1.2.{index} i 4
```

Пример

Komaндa CLI: vxlan VX105 vni 10105 vlan 105 exit

Команда SNMP:

```
snmpget -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.3
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.56.1.1.1.1.3.4 i 1 \
1.3.6.1.4.1.35265.56.1.1.1.1.4.4 i 10105 \
1.3.6.1.4.1.35265.56.1.1.1.1.5.4 i 105 \
1.3.6.1.4.1.35265.56.1.1.1.1.6.4 s "VX105" \
1.3.6.1.4.1.35265.56.1.1.1.1.2.4 i 4
```


Сначала получаем номер первого свободного индекса, а затем используем его для создания VXLAN-инстанса.

Удаление VXLAN-инстанса

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1

snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.35265.56.1.1.1.1.2.{index} i 6

Пример удаления VXLAN-инстанса

Команда CLI: no vxlan VX105

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.1.1.2.4 i 6

Просмотр VXLAN-инстансов

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1

snmpwalk -v2c -c <community> <IP address>
1.3.6.1.4.1.35265.56.1.1.1.1

Пример просмотра VXLAN-инстансов

Команда SNMP: snmpwalk -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.1.1

ПРИЛОЖЕНИЕ А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ

Битовые маски состоят из 128 байт (шестнадцатеричных разрядов всего 256). Каждый разряд обозначает четыре VLAN/порта. По номеру VLAN/порта определяется нужное поле.

<u>Пример 1</u>

Записать битовую маску для интерфейсов TenGigabitEthernet 2/0/16-17:

- для 1G интерфейсов ifIndex начинается с 1;
- для порта te2/0/16 ifIndex равен 68, для te2/0/17 69.

Определение номера разряда:

68/4=17 69/4=17,25 (Каждый разряд отвечает за 4 ifIndex. При делении ifindex на 4 для определения № разряда для записи, полученное значение округляется в большую сторону).

- Если нам нужны порты te2/0/16-17 (ifindex 68,69), то они должны быть записаны в 17 и 18 поле. В двоичной последовательности 17 поле будет записано следующим образом 0001 (Последняя
- 1 68 индекс). Переводим в НЕХ, получаем 1.
 В двоичной последовательности 18 поле будет записано следующим образом 1000 (Первая 1
- 69 индекс). Переводим в НЕХ, получаем 8.

Итого в битовой маске будет 16 нулей, 1, 8: 00000000000000018.

<u>Пример 2</u>

Записать битовую маску для vlan 622, 3100.

- 622/4=155,5 (Каждый 0 отвечает за 4 vlan. При делении vlan на 4 для определения № поля для записи округление всегда идет вверх).
 Если нам нужен vlan 622, то он должен быть записан в 156 поле.
 В двоичной последовательности 156 поле будет записано следующим образом: 0100
 - (вторая 1 622 vlan). Переводим в НЕХ, получаем 4.

Итого в битовой маске будет 155 нулей и 4:

- 3100/4=775

Требуется принять во внимание, что для указания номера VLAN берутся таблицы rldot1qPortVlanStaticEgressList1to1024 rldot1qPortVlanStaticEgressList1025to2048 rldot1qPortVlanStaticEgressList2049to3072 rldot1qPortVlanStaticEgressList3073to4094 Так как наш vlan попадает в 4 таблицу, то 775-256*3=7. Vlan 3100 будет записан в 7 поле данной таблицы. В двоичной последовательности 7 поле будет записано следующим образом: 0001 (Последняя 1 — 3100 vlan). Переводим в НЕХ, получаем 1. Итого в битовой маске будет 6 нулей и 1: 0000001.

ПРИЛОЖЕНИЕ Б. ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL

В данном приложении рассмотрен пример наполнения IP ACL c index-of-acl = 107 правилами вида:

```
ip access-list extended 7-ip
deny udp any bootps any bootpc ace-priority 20
permit igmp any any ace-priority 40
deny ip any 224.0.0.0 15.255.255.255 ace-priority 60
permit ip 37.193.119.7 0.0.0.0 any ace-priority 80
permit ip 10.130.8.3 0.0.0.0 any ace-priority 100
permit ip 192.168.0.0 0.0.0.15 any ace-priority 120
permit ip 37.193.119.7 0.0.0.0 any ace-priority 140
exit
```

Создание правила deny udp any bootps any bootpc

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} i {protocol(1)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} x {protocol index (HEX)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} i {Значение в таблице порта для
протокола = 0. Константа для этого правила} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} i {udp-port-src(6)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} i {Number of source port (DEC)} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 3} i { udp-port-dst(6) } \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} i {Number of dst port (DEC)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} i {Number of dst port (DEC)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} x {dst ip(HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny(2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {udp(3)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
1.3.6.1.4.1.89.88.31.1.7.{index-of-acl}.{index-of-rule} i {значение поля 3} \
1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила deny udp any bootps any bootpc в IP ACL 7-ip (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
ip access-list extended 7-ip
deny udp any bootps any bootpc ace-priority 20
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 1 \
```

Aeltex

```
1.3.6.1.4.1.89.88.5.1.4.1 x "0x11 FF" \
1.3.6.1.4.1.89.88.5.1.3.1 i 0 \
1.3.6.1.4.1.89.88.5.1.2.2 i 6 \
1.3.6.1.4.1.89.88.5.1.3.2 i 67 \
1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00" \
1.3.6.1.4.1.89.88.5.1.2.3 i 7 \
1.3.6.1.4.1.89.88.5.1.3.3 i 68 \
1.3.6.1.4.1.89.88.5.1.4.3 x "0x00 00"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.5.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 3 \
```

<u>Создание правила permit iqmp any any</u>

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 4} i {protocol(1)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 4} x {protocol index (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit. snmpset -v2c -c <community> <IP address> \

```
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {igmp (8)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 4}
```

Пример добавления правила permit igmp any any в IP ACL 7-ip (т.к. предполагается, что правило второе по счету, то index-of-rule=40)

```
Команда CLI:

ip access-list extended 7-ip

permit igmp any any ace-priority 40

exit

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.5.1.2.4 i 1 \

1.3.6.1.4.1.89.88.5.1.4.4 x "0x02 FF"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.1.40 i 1 \

1.3.6.1.4.1.89.88.31.1.3.1.40 i 1 \

1.3.6.1.4.1.89.88.31.1.4.1.40 i 8 \

1.3.6.1.4.1.89.88.31.1.5.1.40 i 4
```
Создание правила deny ip any any any 224.0.0.0 15.255.255.255

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 5} i {ip-dest(3)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 5} x {dst ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny (2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 5}
```

Пример добавления правила deny ip any any any 224.0.0.0 15.255.255.255 в IP ACL 7-ip (т.к. предполагается, что правило третье по счету, то index-of-rule=60)

```
Команда CLI:

ip access-list extended 7-ip

deny ip any any any 224.0.0.0 15.255.255.255 ace-priority 60

exit

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.5.1.2.5 i 3 \

1.3.6.1.4.1.89.88.5.1.4.5 x "0xE0 00 00 00 0F FF FF FF"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.1.60 i 2 \

1.3.6.1.4.1.89.88.31.1.4.1.60 i 1 \

1.3.6.1.4.1.89.88.31.1.5.1.60 i 5
```

<u>Создание правила permit ip any any 37.193.119.7 0.0.0.0 any</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5, rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 6} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 6} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
    1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
    1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 6}
```

Пример добавления правила permit ip 37.193.119.7 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило четвертое по счету, то index-of-rule=80)

```
Команда CLI:
ip access-list extended 7-ip
permit ip 37.193.119.7 0.0.0.0 any ace-priority 80
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.6 i 2 \
1.3.6.1.4.1.89.88.5.1.4.6 x "0x25 C1 77 07 00 00 00 00"
```

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.80 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.80 i 1 \
1.3.6.1.4.1.89.88.31.1.6.1.80 i 6

Создание правила permit ip 10.130.8.3 0.0.0.0 any

MIB: qosclimib.mib

```
Используемые таблицы:
```

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 7} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 7} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 7}
```

Пример добавления правила permit ip 10.130.8.3 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило пятое по счету, то index-of-rule=100)

```
Команда CLI:
ip access-list extended 7-ip
permit ip 10.130.8.3 0.0.0 any ace-priority 100
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.7 i 2 \
```

```
1.3.6.1.4.1.89.88.5.1.4.7 x "0x0A 82 08 03 00 00 00 00"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.100 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.100 i 1 \
1.3.6.1.4.1.89.88.31.1.6.1.100 i 7
```

Создание правила permit ip any any 192.168.0.0 0.0.0.15 any

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: Создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 8} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 8} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 8}
```

Пример добавления правила permit ip 192.168.0.0 0.0.0.15 any в IP ACL 7-ip (т.к. предполагается, что правило шестое по счету, то index-of-rule=120)

Команда CLI: ip access-list extended 7-ip permit ip 192.168.0.0 0.0.0.15 any ace-priority 120 exit Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.5.1.2.8 i 2 \ 1.3.6.1.4.1.89.88.5.1.4.8 x "0xc0 A8 00 00 00 00 0F"

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.120 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.120 i 1 \
1.3.6.1.4.1.89.88.31.1.6.1.120 i 8

1. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
    1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
    1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 9} \
    1.3.6.1.4.1.89.88.31.1.6.{index-of-acl}.{index-of-rule} i {значение поля 10}
```

ПРИЛОЖЕНИЕ В. ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST С ПРИВЯЗКОЙ К MAC ACL

В данном приложении рассмотрен пример создания и наполнения MAC ACL c index-of-acl = 207 правилами вида:

```
mac access-list extended 7-mac
offset-list PADO 12 12 00 88 12 13 00 63 12 15 00 07
deny any any offset-list PADO ace-priority 20
```

Создание mac access-list

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

Команда CLI: mac access-list extended 7-mac

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.7.1.2.1 s "7-mac" \ 1.3.6.1.4.1.89.88.7.1.3.1 i 1 \ 1.3.6.1.4.1.89.88.7.1.4.1 i 4

<u>Создание правила в МАС ACL на основе EtherType</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} i {mac-src(10), mac-dest(11),

vlan(12)} \

1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} x {protocol index (HEX)} \

1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} i {Значение в таблице порта для

протокола = 0. Константа для этого правила} \

1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} i {ether-type(17)} \

1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} i {ether-type (DEC)} \

1.3.6.1.4.1.89.88.5.1.4.{значение поля 2} x {Hyлевое поле - константа}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
.1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit(1)
.1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {mac(5)} \
.1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
.1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 в MAC ACL 7mac (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
mac access-list extended 7-mac
permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 ace-priority 20
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 10 \
1.3.6.1.4.1.89.88.5.1.2.2 i 17 \
1.3.6.1.4.1.89.88.5.1.4.1 x "0x001fc68bc68a00000000000" \
1.3.6.1.4.1.89.88.5.1.3.1 i 0 \
1.3.6.1.4.1.89.88.5.1.3.2 i 2054 \
1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.20 i 5 \
1.3.6.1.4.1.89.88.31.1.5.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.9.1.20 i 2
```

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Для получения технической консультации по вопросам эксплуатации оборудования ООО «Предприятие «ЭЛТЕКС» вы можете обратиться в Сервисный центр компании:

Форма обратной связи на сайте: https://eltex-co.ru/support/ Servicedesk: https://servicedesk.eltex-co.ru

На официальном сайте компании вы можете найти техническую документацию и программное обеспечение для продукции ООО «Предприятие «ЭЛТЕКС», обратиться к базе знаний, оставить интерактивную заявку или проконсультироваться у инженеров Сервисного центра на техническом форуме.

Официальный сайт компании: https://eltex-co.ru/ База знаний: https://docs.eltex-co.ru/display/EKB/Eltex+Knowledge+Base Центр загрузок: https://eltex-co.ru/support/downloads