

Узел абонентского доступа/агрегации

MA4000-PX

Приложение к руководству по эксплуатации. Настройка и мониторинг OLT по SNMP Версия ПО 3.38.0

Содержание

1			Работа с ONT	6
	1.1		Конфигурирование	6
		1.1.1	Добавление ONT	7
		1.1.2	Редактирование общих параметров ONT	7
		1.1.3	Управление РоЕ на портах	9
		1.1.4	Удаление ONT	9
		1.1.5	Замена ОNT	10
	1.2		Команды	10
		1.2.1	Реконфигурация	10
		1.2.2	Перезагрузка	10
		1.2.3	Сброс к заводским настройкам	10
		1.2.4	Деактивация	10
		1.2.5	Активация	11
		1.2.6	Обновление ПО ONT по протоколу ОМСІ	11
	1.3		Запросы	12
		1.3.1	Общее состояние ONT	12
		1.3.2	Состояние РРР-сессии	12
		1.3.3	Таблица МАС-адресов	13
		1.3.4	Таблица IGMP-групп	13
		1.3.5	Журнал подключений ONT	14
		1.3.6	Счетчики ONT	14
		1.3.7	Сброс счётчиков на ONT	17
		1.3.8	Сброс счетчиков GPON-порта	17
2			Конфигурация OLT	18
	2.1		Применение и подтверждение конфигурации	18
		2.1.1	Commit	18
		2.1.2	Confirm	18
	2.2		Настройка VLAN (PP4X/PLC8)	18
		2.2.1	PP4X	18
		2.2.2	PLC	20
	2.3		Настройка Terminal VLAN	22
		2.3.1	Добавление Terminal VLAN	22
		2.3.2	Редактирование параметров Terminal VLAN	22
		2.3.3	Удаление Terminal VLAN	23
		2.3.4	Запрос списка Terminal VLAN, конфигурации конкретной Terminal VLAN	23

	2.4 ł	Настройка IGMP/MLD	24
	2.4.1	Глобальные настройки включения IGMP/MLD Snooping, Proxy Report	24
	2.4.2	Настройка включения IGMP Snooping, Querier для VLAN	24
	2.4.3	Добавление/удаление IGMP/MLD Proxy Report Range	25
	2.4.4	Запрос текущей конфигурации по предыдущим пунктам	29
	2.5 ł	Настройка профилей Cross-connect, DBA, Ports	31
	2.5.1	Cross-connect	31
	2.5.2	DBA	32
	2.5.3	Ports	34
	2.6 H	Конфигурация слотов PLC	36
	2.6.1	Изменение типа модуля PLC	36
	2.6.2	Запрос состояния модуля PLC	36
	2.7 ł	(аналы PON	36
	2.7.1	Включение, выключение каналов PON	36
	2.7.2	Реконфигурация	37
	2.7.3	Просмотр счетчиков	37
3	(Операции загрузки/выгрузки, обновления	39
	3.1 ľ	10 OLT (tftp/http)	39
	3.1.1	Загрузка ПО OLT	
	3.1.2	Смена активного образа ПО	39
	3.1.3	Подтверждение замены ПО	40
	3.1.4	Запрос текущего ПО корзины	40
	3.2 ľ	Терезагрузка	40
	3.2.1	Перезагрузка корзины	40
	3.2.2	Перезагрузка слотов (РР4Х, PLC)	40
	3.3 I	10 ONT	41
	3.3.1	Загрузка ПО	41
	3.3.2	Запрос списка загруженного ПО	42
	3.3.3	Удаление загруженного ПО	42
	3.4 3	Загрузка/выгрузка конфигурации	42
	3.4.1	Выгрузка бэкапа конфигурации	42
	3.4.2	Загрузка бэкапа конфигурации	43
4	1	Иониторинг OLT	44
	4.1	Активные аварии	44
	4.2 0	Общие сведения о корзине, РР4Х, РLС8	44
	4.3	Электропитание	45
	4.4 (Состояние портов РР4Х и РОN-каналов PLC8	45

4.5	Таблица МАС	45
4.6	Multicast	47
4.7	РРРоЕ-сессии	47
5	Список изменений	49

Примечания и предупреждения

- Примечания содержат важную информацию, советы или рекомендации по использованию и настройке устройства.
- Предупреждения информируют пользователя о ситуациях, которые могут нанести вред программно-аппаратному комплексу, привести к некорректной работе системы или потере данных.

1 Работа с ОМТ

Соответствие имен параметров цифровым OID приведено в MIB-файлах. При необходимости задания номера слота в командах указывается номер, увеличенный на единицу (т. е. при работе со слотом 5 указывается цифра 6).

Если в команде присутствует серийный номер ONT (<dec_serial>), то он указывается с помощью 8 десятичных чисел, разделённых точками.

Примеры:

Серийный номер	Параметр команды snmp
ELTX24A80012	69.76.84.88.36.168.0.18
45-4C-54-58-00-00-00-01	69.76.84.88.0.0.0.1

Профили для ONT назначаются заданием индекса профиля на соответствующий OID-конфигурации ONT. Узнать индекс профиля по его имени можно в таблицах профилей:

Тип профиля	Таблица
Management	ltp8xONTManagementProfileTable
Ports	ltp8xONTPortsProfileTable
Shaping	ltp8xONTShapingProfileTable
Scripting	ltp8xONTScriptingProfileTable
DBA	ltp8xONTAllocProfileTable
Cross-connect	ltp8xONTCrossConnectProfileTable

Если для профиля допускается значение *unassigned*, то для установки такого значения вместо индекса профиля передаётся число 65535.

1.1 Конфигурирование

Конфигурирование ОNT производится с помощью таблиц:

- Itp8xONTConfigTable общие параметры;
- ltp8xONTCustomCrossConnectTable custom-параметры;
- Itp8xONTFullServicesConfigTable профили Cross-Connect и DBA;
- ltp8xONTSelectiveTunnelTable selective-tunnel uvids.

1.1.1 Добавление ONT

При добавлении ONT необходимо указать серийный номер, номер gpon-порта и ONT ID.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTConfigRowStatus.<slot>.8.<dec_serial> i 4 ltp8xONTConfigChannel.<slot>.8.<dec_serial> u <gpon_port> ltp8xONTConfigID.<slot>.8.<dec_serial> u <ont_id>

Где:

• <gpon_port> - реальное значение номера порта.

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTConfigRowStatus.15.8.69.76.84.88.36.168.0.18 i 4
ltp8xONTConfigChannel.15.8.69.76.84.88.36.168.0.18 u 6
ltp8xONTConfigID.15.8.69.76.84.88.36.168.0.18 u 0
```

Данная команда создаёт ОNT 14/6/0 с серийным номером ELTX24A80012.

1.1.2 Редактирование общих параметров ONT

1.1.2.1 Общие параметры ОNT

Общие параметры ONT настраиваются с помощью таблицы ltp8xONTConfigTable.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> <parameter_oid_1>.<slot>.8.<dec_serial> <par1_type>
<par1_value>

<parameter_oid_2>.<slot>.8.<dec_serial> <par2_type> <par2_value>

Где:

- <parameter_oid_N> имена конкретных параметров в MIB;
- <parN_type> тип значения параметра;
- <parN_value> значение параметра.

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTConfigDescription.15.8.69.76.84.88.36.168.0.18 s
"ont_description"
ltp8xONTConfigManagementProfile.15.8.69.76.84.88.36.168.0.18 u 1
ltp8xONTConfigFecUp.15.8.69.76.84.88.36.168.0.18 i 1
```

Эта команда для ONT с серийным номером ELTX24A80012 устанавливает значение *decription*, назначает профиль Management и включает коррекцию ошибок.

1.1.2.2 Профили Cross-Connect и DBA

Профили Cross-Connect и DBA настраиваются с помощью таблицы *ltp8xONTFullServicesConfigTable*. Аналогично custom-параметрам, указывается дополнительный индекс — номер сервиса со значением, увеличенным на единицу.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
Itp8xONTFullServicesConfigCrossConnectProfile.<slot>.8.<dec_serial>.<service> u <value>

Пример:

snmpset -v2c -c private 192.168.0.1
ltp8xONTFullServicesConfigCrossConnectProfile.15.8.69.76.84.88.36.168.0.18.8 u 1
ltp8xONTFullServicesConfigDBAProfile.15.8.69.76.84.88.36.168.0.18.8 u 2

Эта команда для ONT с серийным номером ELTX24A80012 устанавливает профиль Cross-Connect с индексом 1 и профиль DBA с индексом 2 для сервиса 7.

1.1.2.3 Параметры Custom Cross-Connect

Параметры Custom Cross-Connect настраиваются с помощью таблицы *ltp8xONTCustomCrossConnectTable*. Вводится дополнительный индекс — номер сервиса, в котором указывается значение номера сервиса, увеличенное на единицу.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTCustomCrossConnectEnabled.<slot>.8.<dec_serial>.<service> i <value>

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTCustomCrossConnectEnabled.15.8.69.76.84.88.36.168.0.18.3 i 1
ltp8xONTCustomCrossConnectVID.15.8.69.76.84.88.36.168.0.18.3 i 100
ltp8xONTCustomCrossConnectCOS.15.8.69.76.84.88.36.168.0.18.3 i 1
ltp8xONTCustomCrossConnectSVID.15.8.69.76.84.88.36.168.0.18.3 i 200
```

Эта команда для ONT с серийным номером ELTX24A80012 активирует параметры Custom Cross Connect для сервиса 2 и устанавливает значения cvid=100, svid = 200, cos = 1.

1.1.2.4 Selective-tunnel uvids

Selective-tunnel uvids настраиваются с помощью таблицы *ltp8xONTSelectiveTunnelTable*. В дополнение к номеру сервиса вводится индекс — номер *selective-tunnel uvid*. Индекс принимает значения от 1 до 42. Индексы назначенных *uvid* должны идти последовательно, без разрывов в нумерации. Например, если определены uvid с индексами 1 и 2, то следующий назначаемый uvid должен иметь индекс 3.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTSelectiveTunnelUVID.<slot>.8.<dec_serial>.<service>.<uvid_id> i
<SelectiveTunnelUVID_value>

Где:

• <SelectiveTunnelUVID_value> - значение selective-tunnel uvid.

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTSelectiveTunnelUVID.
15.8.69.76.84.88.36.168.0.18.8.1 i 200
```

Эта команда для ONT с серийным номером ELTX24A80012 добавляет selective-tunnel uvid = 200 для сервиса 7.

1.1.3 Управление РоЕ на портах

Управление PoE на портах ONT настраивается с помощью таблицы *ltp8xOntConfigUniPortTable*.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> <parameter_oid_1>.1.8.<dec_serial>.<port_number> <par1_type>
<par1_value>

<parameter_oid_2>.<slot>.8.<dec_serial>.<port_number> <par2_type> <par2_value>

<parameter_oid_N>.<slot>.8.<dec_serial>.<port_number> <parN_type> <parN_value>

Для включения на порту РоЕ необходимо выполнить команду:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xOntConfigUniPortRowStatus.<slot>. 8.<dec_serial>.<port_number> i 6

Где:

- <parameter_oid_N> имена конкретных параметров в MIB;
- <parN_type> тип значения параметра;
- <parN_value> значение параметра;
- <port_number> номер порта.

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xOntConfigUniPortRowStatus.15.8.69.76.84.88.130.0.0.2.1 i 4
ltp8xONTPortsUNIPoeEnable.15.8.69.76.84.88.130.0.0.2.1 i 1
ltp8xONTPortsUNIPoeClassControl.15.8.69.76.84.88.130.0.0.2.1 u 2
ltp8xONTPortsUNIPoePowerPriority.15.8.69.76.84.88.130.0.0.2.1 u 3
```

Эта команда включает PoE на ONT с серийным номером ELTX24A80012, с параметрами class-control - 2, power-priority - low.

1.1.4 Удаление ОNT

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>

ltp8xONTConfigRowStatus.<slot>.8.<dec_serial> i 6

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTConfigRowStatus.15.8.69.76.84.88.36.168.0.18 i 6
```

Эта команда удаляет конфигурацию ONT с серийным номером ELTX24A80012.

1.1.5 Замена ОМТ

Замена ОNT производится с помощью последовательных команд на удаление и на создание конфигурации с новыми параметрами.

1.2 Команды

1.2.1 Реконфигурация

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTStateReconfigure.<slot>.8.<dec_serial> u 1

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTStateReconfigure.15.8.69.76.84.88.36.168.0.18 u 1
```

1.2.2 Перезагрузка

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTStateReset.<slot>.8.<dec_serial> u 1

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTStateReset.15.8.69.76.84.88.36.168.0.18 u 1
```

1.2.3 Сброс к заводским настройкам

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTStateResetToDefaults.<slot>.8.<dec_serial> u 1

Пример:

snmpset -v2c -c private 192.168.0.1
ltp8xONTStateResetToDefaults.15.8.69.76.84.88.36.168.0.18 u 1

1.2.4 Деактивация

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTDisableSlot.0 u <slot> ltp8xONTDisableONTSerial.0 x <hex_serial> ltp8xONTDisableChannel.0 u <gpon_port> ltp8xONTDisableActionDisable.0 u 1

Где:

- <hex_serial> серийный номер в hex-формате;
- <gpon_port> реальное значение номера порта;
- <slot> значение номера слота, увеличенное 1.

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTDisableSlot.0 u 15 ltp8xONTDisableONTSerial.0 x
"454C545824A80012" ltp8xONTDisableChannel.0 u 6
ltp8xONTDisableActionDisable.0 u 1
```

Команда выполняет деактивацию ONT ELTX24A80012 на 6 канале слота 14.

1.2.5 Активация

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTDisableSlot.0 u <slot> ltp8xONTDisableONTSerial.0 x <hex_serial> ltp8xONTDisableChannel.0 u <ont_channel> ltp8xONTDisableActionEnable.0 u 1

Где:

- <hex_serial> серийный номер в hex-формате;
- <ont_channel> номера gpon-порта;
- <slot> значение номера слота, увеличенное 1.

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTDisableSlot.0 u 15 ltp8xONTDisableONTSerial.0 x
"454C545824A80012" ltp8xONTDisableChannel.0 u 6
ltp8xONTDisableActionEnable.0 u 1
```

Команда выполняет активацию ONT ELTX24A80012 на 6 канале слота 14.

1.2.6 Обновление ПО ОNТ по протоколу ОМСІ

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTFirmwareUpdateViaOMCISlot.0 u <slot> ltp8xONTFirmwareUpdateViaOMCISerial.0 x <hex_serial> ltp8xONTFirmwareUpdateViaOMCIFilename.0 s <firmware_name> ltp8xONTFirmwareUpdateViaOMCIAction.0 u 1

Где:

- <hex_serial> серийный номер в hex-формате;
- <firmware_name> имя файла прошивки ONT, хранящегося на OLT.

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTFirmwareUpdateVia0MCISerial.0 x
"454C545824A80012" ltp8xONTFirmwareUpdateVia0MCIFilename.0 s "ntp-rg-revc
3.24.3.41.fw.bin" ltp8xONTFirmwareUpdateVia0MCIAction.0 u 1
```

Команда запускает обновление ONTELTX24A80012 файлом прошивки "ntp-rg-revc-3.24.3.41.fw.bin".

1.3 Запросы

1.3.1 Общее состояние ONT

Параметры состояния ONT можно запросить с помощью таблицы *ltp8xONTStateTable*.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> <parameter_oid>.<slot>.8.<dec_serial>

Пример:

```
snmpget -v2c -c public 192.168.0.1
ltp8xONTStateState.15.8.69.76.84.88.36.168.0.18
ltp8xONTStateVersion.15.8.69.76.84.88.36.168.0.18
```

Команда запрашивает состояние и версию ПО для ONT ELTX24A80012.

1.3.2 Состояние РРР-сессии

Получить список сессий в виде перечня клиентских МАС-адресов для выбранной ONT можно с помощью следующего запроса:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xOLTPPPoESessionsClientMac.<slot>.<gpon_port>.<ont_id>

Где:

• <gpon_port> - значение номера порта, увеличенное на 1.

Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8x0LTPPPoESessionsClientMac.15.7.0

Команда запрашивает список сессий в виде перечня клиентских МАС-адресов для ОNT 14/6/0.

Для запроса данных конкретной PPPoE-сессии необходимо указать номер gpon-порта, ONT ID и клиентский MAC-адрес.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>

Itp8xOLTPPPoESessionsPort.<slot>.<gpon_port>.<ont_id>.<dec_client_mac> Itp8xOLTPPPoESessionsSessionID.<slot>.<gpon_port>.<ont_id>.<dec_client_mac> Itp8xOLTPPPoESessionsDuration.<slot>.<gpon_port>.<ont_id>.<dec_client_mac> Itp8xOLTPPPoESessionsUnblock.<slot>.<gpon_port>.<ont_id>.<dec_client_mac> Itp8xOLTPPPoESessionsSerial.<slot>.<gpon_port>.<ont_id>.<dec_client_mac>

Где:

- <gpon_port> значение номера порта, увеличенное на 1;
- <dec_client_mac> клиентский МАС-адрес в десятичном виде.

```
snmpget -v2c -c public 192.168.0.1
ltp8xOLTPPPoESessionsPort.15.7.0.152.222.208.0.205.252
ltp8xOLTPPPoESessionsDuration.15.7.0.152.222.208.0.205.252
ltp8xOLTPPPoESessionsUnblock.15.7.0.152.222.208.0.205.252
ltp8xOLTPPPoESessionsSerial.15.7.0.152.222.208.0.205.252
```

Команда запрашивает параметры PPP-сессии с клиентским MAC-адресом 98:de:d0:00:cd:fc для ONT14/6/0.

1.3.3 Таблица МАС-адресов

Используется таблица *ltp8xONTAddressTable*. Для получения перечня записей для выбранной ONT необходимо воспользоваться следующим запросом.

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr>
ltp8xONTAddressEntryID.<slot>.8.<dec_serial>

Пример:

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTAddressEntryID.15.8.69.76.84.88.36.168.0.18
```

Команда запрашивает список записей в таблице МАС-адресов для ONT ELTX24A80012.

Для запроса записей таблицы МАС-адресов необходимо указать серийный номер ONT и ID-записи в таблице адресов этой ONT.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
<parameter_oid>.<slot>.8.<dec_serial>.<entry_id>

Пример:

```
snmpget -v2c -c public 192.168.0.1
ltp8xONTAddressMacAddress.15.8.69.76.84.88.36.168.0.18.1
ltp8xONTAddressCVID.15.8.69.76.84.88.36.168.0.18.1
ltp8xONTAddressSVID.15.8.69.76.84.88.36.168.0.18.1
ltp8xONTAddressUVID.15.8.69.76.84.88.36.168.0.18.1
```

Данная команда запрашивает MAC-адрес, CVID, SVID, UVID для первой записи в таблице MAC-адресов ONT ELTX24A80012.

1.3.4 Таблица IGMP-групп

Используется таблица *ltp8xONTMulticastStatsTable*. Для получения перечня записей выбранной ONT необходимо воспользоваться следующим запросом.

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr>
ltp8xONTMulticastStatsRecordID.<slot>.8.<dec_serial>

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTMulticastStatsRecordID.15.8.69.76.84.88.36.168.0.18
```

Команда запрашивает список записей в таблице IGMP-групп для ONT ELTX24A80012.

Для запроса записей таблицы IGMP-групп необходимо указать серийный номер ONT и ID-записи в таблице IGMP-групп для этой ONT.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
<parameter_oid>.<slot>.8.<dec_serial>.<entry_id>

Пример:

```
snmpget -v2c -c public 192.168.0.1
ltp8xONTMulticastStatsMulticastAddress.15.8.69.76.84.88.36.168.0.18.153
ltp8xONTMulticastStatsStop.15.8.69.76.84.88.36.168.0.18.153
ltp8xONTMulticastStatsStart.15.8.69.76.84.88.36.168.0.18.153
```

Команда запрашивает IP-адрес группы, время старта и остановки вещания для 153 записи в таблице IGMP-групп ONT ELTX24A80012 с 14 слота.

1.3.5 Журнал подключений ОNT

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
ltp8xONTConnectionLogText.<slot>.8.<dec_serial>

Пример:

snmpget -v2c -c public 192.168.0.1
ltp8xONTConnectionLogText.15.8.69.76.84.88.36.168.0.18

Команда запрашивает журнал подключений для ONT ELTX24A80012 с 14 слота.

1.3.6 Счетчики ONT

Для получения информации о счетчиках используется таблица *ltp8xONTStatistics*.

1.3.6.1 Счетчики для Cross-connect

Соответствие счетчиков и OID приведено в таблице ниже.

Таблица 1 — Соответствие счетчиков ОNT и OID

Счетчик	OID	Описание
CrossConnect в направлении downstream	ltp8xONTCrossConnectDSCounterName	Имя счетчика CrossConnect

Счетчик	OID	Описание
	ltp8xONTCrossConnectDSCounterValue	Значение счетчика CrossConnect
CrossConnect в направлении upstream	ltp8xONTCrossConnectUSCounterName	Имя счетчика CrossConnect
	ltp8xONTCrossConnectUSCounterValue	Значение счетчика CrossConnect
GEM в направлении downstream	ltp8xONTGEMPortPerformMonitoringDSC ounterName	Имя счетчика GEM
	ltp8xONTGEMPortPerformMonitoringDSC ounterValue	Значение счетчика GEM
GEM в направлении upstream	ltp8xONTGEMPortPerformMonitoringUSC ounterName	Имя счетчика GEM
	ltp8xONTGEMPortPerformMonitoringUSC ounterValue	Значение счетчика GEM
GAL	ltp8xONTGalEthPerformMonitoringHistDat aCounterName	Имя счетчика GAL
	ltp8xONTGalEthPerformMonitoringHistDat aCounterValue	Значение счетчика GAL
FEC	ltp8xONTFecPerformMonitoringHistDataC ounterName	Имя счетчика FEC
	ltp8xONTFecPerformMonitoringHistDataC ounterValue	Значение счетчика FEC

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> <parameter_oid>.<slot>.8.<dec_serial>.<cross_connect_id>

Пример:

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTCrossConnectDSCounterName.15.8.69.76.84.88.36.168.0.18.1
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTCrossConnectDSCounterValue.15.8.69.76.84.88.36.168.0.18.1
```

Команда запрашивает список имен счетчиков Cross-Connect в направлении downstream и их значений для первого сервиса ONT ELTX24A80012.

1.3.6.2 Состояние ЕТН-портов

Для получения информации о состоянии портов используется таблица ltp8xONTUNIPortsStateTable.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> Itp8xONTUNIPortsStateAvailable.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStateLinkUp.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStateSpeed.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStateDuplex.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEEnabled.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEEnabled.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPowerDetectionStatus.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPowerClassificationStatus.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEClassControl.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoEPSEPowerPriority.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoECurrentPowerConsumption.<slot>.8.<dec_serial>.<eth_port_id> Itp8xONTUNIPortsStatePoECurrentPowerConsumption.<slot>.8.<dec_serial>.<eth_port_id>

Пример:

snmpget -v2c -c public 192.168.0.1 ltp8xONTUNIPortsStateAvailable.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStateLinkUp.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStateDuplex.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEEnabled.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEEnabled.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEPowerDetectionStatus.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEPowerClassificationStatus.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEPSEClassControl.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEPSEClassControl.15.8.69.76.84.88.36.168.0.18.1 ltp8xONTUNIPortsStatePoEPSEPowerPriority.15.8.69.76.84.88.36.168.0.18.1

Команда запрашивает состояние первого ЕТН-порта для ONT ELTX24A80012 с 14 слота.

1.3.6.3 Счётчики ЕТН-портов

Соответствие счетчиков и OID приведено в таблице ниже.

Таблица 2 — Соответствие счетчиков ЕТН-портов и OID

Счетчик	OID	Описание
ETH extended в направлении downstream	ltp8xONTEthFrameExtendedPerformMonit oringDSCounterName	Имя счетчика ETH extended
	ltp8xONTEthFrameExtendedPerformMonit oringDSCounterValue	Значение счетчика ETH extended
ETH extended в направлении upstream	ltp8xONTEthFrameExtendedPerformMonit oringUSCounterName	Имя счетчика ETH extended
	ltp8xONTEthFrameExtendedPerformMonit oringUSCounterValue	Значение счетчика ETH extended

Счетчик	OID	Описание
ETH	ltp8xONTEthPerformMonitoringHistDataC ounterName	Имя счетчика ETH
	ltp8xONTEthPerformMonitoringHistDataC ounterValue	Значение счетчика ЕТН

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> <parameter_oid>.<slot>.8.<dec_serial>.<eth_port_id>

Пример:

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTEthFrameExtendedPerformMonitoringDSCounterName.15.8.69.76.84.88.36.168.0.18.1
snmpwalk -v2c -c public 192.168.0.1
ltp8xONTEthFrameExtendedPerformMonitoringDSCounterValue.15.8.69.76.84.88.36.168.0.18.1
```

Команда запрашивает список имен счетчиков ETH extended в направлении downstream и их значений для первого ETH-порта ONT ELTX24A80012.

1.3.7 Сброс счётчиков на ONT

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTResetCountersAction.<slot>.8.<dec_serial> u 1

Пример:

snmpset -v2c -c private 192.168.0.1
ltp8xONTResetCountersAction.15.8.69.76.84.88.36.168.0.18 u 1

Команда сбрасывает значения счетчиков ONT ELTX24A80012 на 14 слоте.

1.3.8 Сброс счетчиков GPON-порта

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xPONChannelResetCounters.<slot>.<gpon_port> u 1

Где:

- <gpon_port> значение номера порта, увеличенное на 1.
- <slot> значение номера слота, увеличенное на 1.

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xPONChannelResetCounters.15.7 u 1

Команда сбрасывает значения счетчиков gpon-порта 14/6.

2 Конфигурация OLT

2.1 Применение и подтверждение конфигурации

Перед первой операцией commit/confirm необходимо выполнить запрос:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> eltexRowStatus.100 i 4

Пример:

snmpset -v2c -c private 192.168.0.1 eltexRowStatus.100 i 4

Запрос необходимо будет повторить после перезапуска устройства или смены мастера pp4x.

2.1.1 Commit

Формат команды:

snmpset -v2c -c <rw_community> -t 20 <ipaddr> eltexSourceFileType.100 i 6 eltexSourceLocation.100 i 8 eltexSourceFileName.100 s "candidate" eltexDestinationFileType.100 i 5 eltexDestinationLocation.100 i 8 eltexDestinationFileName.100 s "running"

Пример:

```
snmpset -v2c -c private -t 20 192.168.0.1 eltexSourceFileType.100 i 6
eltexSourceLocation.100 i 8 eltexSourceFileName.100 s "candidate"
eltexDestinationFileType.100 i 5 eltexDestinationLocation.100 i 8
eltexDestinationFileName.100 s "running"
```

2.1.2 Confirm

Формат команды:

snmpset -v2c -c <rw_community> -t 20 <ipaddr> eltexSourceFileType.100 i 5 eltexSourceLocation.100 i 8 eltexSourceFileName.100 s "running" eltexDestinationFileType.100 i 9 eltexDestinationLocation.100 i 8 eltexDestinationFileName.100 s "confirm"

Пример:

```
snmpset -v2c -c private -t 20 192.168.0.1 eltexSourceFileType.100 i 5
eltexSourceLocation.100 i 8 eltexSourceFileName.100 s "running"
eltexDestinationFileType.100 i 9 eltexDestinationLocation.100 i 8
eltexDestinationFileName.100 s "confirm"
```

2.2 Настройка VLAN (PP4X/PLC8)

2.2.1 PP4X

Для управления VLAN PP4X используется таблица dot1qVlanStaticTable.

2.2.1.1 Добавление VLAN

При создании нового VLAN необходимо указать его имя и набор портов-членов VLAN.

Членство портов в VLAN указывается при помощи трёх битовых масок, в каждой из которых значение 1 в N-ном бите (считая от старшего к младшему) означает включение порта с ifIndex = N в это множество. Для подстановки в команды snmpset битовые маски переводятся в hex-форму.

Существует три множества:

- EgressPorts порты-члены VLAN;
- ForbiddenEgressPorts порты, не являющиеся членами VLAN;
- UntaggedPorts если порт-член VLAN включён в данное множество, то считается что он untagged, если не включён — tagged.

В соответствии со структурой индексов ifTable в MA4000 — маска, включающая в себя все возможные порты, но при отсутствии port-channel имеет вид:

• AAA0AAA0AAA022AAAA0AAA0AAA022A00FFFF00.

Если port-channel присутствуют в конфигурации, то изменится 16 байт в маске, например если есть portchannel 1 и 2, то маска будет иметь вид:

• AAA0AAA0AAA022AAAA0AAA0AAA022AC0FFF00.

```
Формат команды:
```

snmpset -v2c -c <rw_community> <ipaddr> dot1qVlanStaticRowStatus.<vlan_id> i 4 dot1qVlanStaticName.<vlan_id> s "<vlan_name>" dot1qVlanStaticEgressPorts.<vlan_id> x "<ports_mask>" dot1qVlanForbiddenEgressPorts.<vlan_id> x "<ports_mask>" dot1qVlanStaticUntaggedPorts.<vlan_id> x "<ports_mask>"

Пример:

Команда создаёт VLAN 72 с именем "created_by_snmp", во VLAN включены порты frontport 2/3 (untagged) и front-port 2/4 (tagged).

2.2.1.2 Редактирование VLAN

Команда на редактирование VLAN аналогична команде создания VLAN, однако в ней не указывается параметр dot1qVlanStaticRowStatus.

2.2.1.3 Удаление VLAN

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> dot1qVlanStaticRowStatus.<vlan_id> i 6 Пример:

snmpset -v2c -c private 192.168.0.1 dot1qVlanStaticRowStatus.72 i 6

Команда удаляет VLAN 72 из конфигурации PP4X.

2.2.1.4 Запрос списка VLAN, конфигурации конкретной VLAN

Для запроса списка VLAN необходимо воспользоваться запросом:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> dot1qVlanStaticName

Пример:

snmpwalk -v2c -c public 192.168.0.1 dot1qVlanStaticName

Команда выводит список VLAN для PP4X.

Получить конфигурацию конкретной VLAN можно с помощью следующего запроса:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> dot1qVlanStaticName.<vid>
dot1qVlanStaticEgressPorts.<vid> dot1qVlanForbiddenEgressPorts.<vid>
dot1qVlanStaticUntaggedPorts.<vid>

Пример:

```
snmpget -v2c -c public 192.168.0.1 dot1qVlanStaticName.72
dot1qVlanStaticEgressPorts.72 dot1qVlanForbiddenEgressPorts.72
dot1qVlanStaticUntaggedPorts.72
```

Команда выводит конфигурацию конкретной VLAN для PP4X.

2.2.2 PLC

Для управления VLAN PLC8 используется таблица *ltp8xSwitchVLANTable*.

2.2.2.1 Добавление VLAN

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xSwitchVLANRowStatus.<slot>.<vid> i 4

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xSwitchVLANRowStatus.15.156 i 4

Команда создаёт VLAN 156 на 14 слоте PLC.

2.2.2.2 Редактирование VLAN

Членство портов в VLAN указывается при помощи двух битовых масок, в каждой из которых значение 1 в N-ном бите (считая от старшего к младшему) означает включение порта с индексом N в это множество. Распределение индексов портов можно узнать в таблице *ltp8xSwitchPortsTable*. Для подстановки в команды snmpset битовые маски переводятся в hex-форму.

Существует два множества: TaggedPorts и UntaggedPorts.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xSwitchVLANName.<slot>.<vid> s "vlan_name" ltp8xSwitchVLANTaggedPorts.<slot>.<vid> x "<tagged_ports_mask>" ltp8xSwitchVLANUntaggedPorts.<slot>.<vid> x "<utagged_ports_mask>" ltp8xSwitchVLANIGMPSnoopingEnabled.<slot>.<vid> i 1/2 ltp8xSwitchVLANMLDSnoopingEnabled.<slot>.<vid> i 1/2

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xSwitchVLANName.15.156 s "edited_by_snmp"
ltp8xSwitchVLANTaggedPorts.15.156 x "40000000"
ltp8xSwitchVLANUntaggedPorts.15.156 x "20000000"
ltp8xSwitchVLANIGMPSnoopingEnabled.15.156 i 1
ltp8xSwitchVLANMLDSnoopingEnabled.15.156 i 2
```

Команда устанавливает для VLAN 156 имя на 14 слоте PLC, "edited_by_snmp", добавляет pon-port 1 tagged, pon-port 2 untagged и включает IGMP snooping.

2.2.2.3 Удаление VLAN

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xSwitchVLANRowStatus.<slot>.<vid> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xSwitchVLANRowStatus.15.156 i 6

Команда удаляет VLAN 156 из конфигурации 14 слота PLC8

2.2.2.4 Запрос списка VLAN, конфигурации конкретной VLAN

Для запроса списка VLAN необходимо воспользоваться запросом:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xSwitchVLANName.<slot>

Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8xSwitchVLANName.15

Команда выводит список VLAN для 14 слота PLC8.

Получить конфигурацию конкретной VLAN можно с помощью следующего запроса:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ltp8xSwitchVLANName.<slot>.<vid> ltp8xSwitchVLANTaggedPorts.<slot>.<vid> ltp8xSwitchVLANUntaggedPorts.<slot>.<vid> ltp8xSwitchVLANIGMPSnoopingEnabled.<slot>.<vid> ltp8xSwitchVLANIGMPSnoopingQuerierEnabled.<slot>.<vid> ltp8xSwitchVLANIGMPSnoopingEnabled.<slot>.<vid> ltp8xSwitchVLANMLDSnoopingEnabled.<slot>.<vid> ltp8xSwitchVLANMLDSnoopingQuerierEnabled.<slot>.<vid>

Пример:

snmpget -v2c -c public 192.168.0.1 ltp8xSwitchVLANName.15.156
ltp8xSwitchVLANTaggedPorts.15.156 ltp8xSwitchVLANUntaggedPorts.15.156
ltp8xSwitchVLANIGMPSnoopingEnabled.15.156
ltp8xSwitchVLANMLDSnoopingEnabled.15.156
ltp8xSwitchVLANMLDSnoopingQuerierEnabled.15.156

Команда выводит конфигурацию конкретного VLAN для 14 слота PLC8.

2.3 Настройка Terminal VLAN

2.3.1 Добавление Terminal VLAN

Добавление Terminal VLAN осуществляется с помощью таблицы ltp8xOLTTerminalVLANsNamesTable.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xOLTTerminalVLANsNamesRowStatus.<t_vlan_id> i 4 ltp8xOLTTerminalVLANsNamesName.<t_vlan_id> s "<t_vlan_name>"

Пример:

snmpset -v2c -c private 192.168.0.1
ltp8x0LTTerminalVLANsNamesRowStatus.1 i 4
ltp8x0LTTerminalVLANsNamesName.1 s "created_by_snmp"

Команда создает Terminal VLAN с индексом 1 и именем "created_by_snmp".

2.3.2 Редактирование параметров Terminal VLAN

Редактирование параметров Terminal VLAN осуществляется с помощью таблицы *ltp8xOLTTerminalVLANsTable*.

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xOLTTerminalVLANsVID.<t_vlan_id> u <vlan_id> ltp8xOLTTerminalVLANsCOS.<t_vlan_id> i <cos>

```
snmpset -v2c -c private 192.168.0.1
ltp8x0LTTerminalVLANsVID.15.1 u 80
ltp8x0LTTerminalVLANsCOS.15.1 i 255
```

Команда устанавливает для Terminal VLAN с индексом 1 значения vlan_id = 80, cos = unused.

2.3.3 Удаление Terminal VLAN

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xOLTTerminalVLANsNamesRowStatus.<t_vlan_id> i 6

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xOLTTerminalVLANsNamesRowStatus.1 i 6
```

Команда удаляет Terminal VLAN с индексом 1 из конфигурации.

2.3.4 Запрос списка Terminal VLAN, конфигурации конкретной Terminal VLAN

Для получения списка Terminal VLAN необходимо воспользоваться запросом:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xOLTTerminalVLANsNamesName

Пример:

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xOLTTerminalVLANsNamesName
```

Команда выводит список Terminal VLAN.

Получить конфигурацию конкретной VLAN можно с помощью следующего запроса:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ltp8xOLTTerminalVLANsName.<t_vlan_id> ltp8xOLTTerminalVLANsVID.<t_vlan_id> ltp8xOLTTerminalVLANsCOS.<t_vlan_id>

Пример:

```
snmpget -v2c -c public 192.168.0.1
ltp8x0LTTerminalVLANsName.15.1
ltp8x0LTTerminalVLANsVID.15.1
ltp8x0LTTerminalVLANsCOS.15.1
```

Команда выводит конфигурацию конкретной Terminal VLAN для 14 слота PLC8.

2.4 Настройка IGMP/MLD

2.4.1 Глобальные настройки включения IGMP/MLD Snooping, Proxy Report

Для настройки IGMP/MLD на PP4X используется таблица pp4IGMPConfig. Для настройки на слотах используются таблицы ltp8xSwitchIGMPSnoopingTable и ltp8xIGMPProxyReportTable. OID для настройки глобальных параметров приведены в таблице ниже.

Таблица 3 — Соответствие OID для настройки глобальных параметров	
--	--

Параметр	OID	Описание		
PP4X				
IGMP Snooping	pp4IGMPSnoopingEnable	Возможные значения: 1— Enable 2— Disable		
IGMP Proxy Report	pp4IGMPProxyReportEnable			
MLD Snooping	pp4MLDSnoopingEnable			
MLD Proxy Report	pp4MLDProxyReportEnable			
PLC8				
IGMP Snooping	ltp8xSwitchIGMPSnoopingEnabled	Возможные значения: 1 — Enable		
IGMP Proxy Report	ltp8xIGMPProxyReportEnabled	2 — Disable		
MLD Proxy Report	ltp8xMLDProxyReportEnabled			

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> <parameter_oid>.<slot> i <value>

```
Где <slot> принимает значения: 0 – для PP4X, 1..16 – для PLC8.
```

Пример:

```
snmpset -v2c -c private 192.168.0.1 pp4IGMPSnoopingEnable.0 i 1
```

Команда включает IGMP Snooping на PP4X.

2.4.2 Настройка включения IGMP Snooping, Querier для VLAN

2.4.2.1 PP4X

Параметр	OID	Описание
IGMP Snooping	pp4IGMPSnoopingVLANEnabled	Возможные значения:
IGMP Querier	pp4IGMPSnoopingVLANQuerierEnabled	1 – Enable 2 – Disable
MLD Snooping	pp4MLDSnoopingVLANEnabled	
MLD Querier	pp4MLDSnoopingVLANQuerierEnabled	

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> <parameter_oid>.<vid> i <value>

Пример:

snmpset -v2c -c private 192.168.0.1 pp4IGMPSnoopingVLANEnabled.86 i 1

Команда включает IGMP Snooping для VLAN 86 на PP4X.

2.4.2.2 PLC

Данная настройка осуществляется аналогично разделу Редактирование VLAN.

2.4.3 Добавление/удаление IGMP/MLD Proxy Report Range

2.4.3.1 PP4X

Для конфигурирования Proxy Report Range на PP4X используются таблицы pp4IGMPProxyReportRangesTable, pp4MLDProxyReportRangesTable.

Добавление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4IGMPProxyRowStatus.<range_id> i 4 pp4IGMPProxyReportRangesStart.<range_id> a <range_start> pp4IGMPProxyReportRangesEnd.<range_id> a <range_end> pp4IGMPProxyReportRangesFromVLAN.<range_id> u <from_vlan> pp4IGMPProxyReportRangesToVLAN.<range_id> u <to_vlan>

Пример:

```
snmpset -v2c -c private 192.168.0.1 pp4IGMPProxyRowStatus.1 i 4
pp4IGMPProxyReportRangesStart.1 a 233.0.0.1
pp4IGMPProxyReportRangesEnd.1 a 233.0.0.255
pp4IGMPProxyReportRangesFromVLAN.1 u 5 pp4IGMPProxyReportRangesToVLAN.1
u 6
```

Команда добавляет новую запись IGMP Proxy Report Range для PP4X с параметрами:

- id=1;
- ip_start: 233.0.0.1;
- ip_end: 233.0.0.255;
- from_vlan: 5;
- to_vlan: 6.

Просмотр ID уже добавленных записей IGMP Proxy Report Range PP4X:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> pp4IGMPProxyReportRangesID

Пример:

snmpwalk -v2c -c public 192.168.0.1 pp4IGMPProxyReportRangesID

Удаление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4IGMPProxyRowStatus.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 pp4IGMPProxyRowStatus.1 i 6

Команда удаляет запись IGMP Proxy Report Range c id=1 для PP4X.

Добавление MLD Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4MLDProxyRowStatus.<range_id> i 4 pp4MLDProxyReportRangesStart.<range_id> s <range_start> pp4MLDProxyReportRangesEnd.<range_id> s <range_end> pp4MLDProxyReportRangesFromVLAN.<range_id> u <from_vlan> pp4MLDProxyReportRangesToVLAN.<range_id> u <to_vlan>

Пример:

snmpset -v2c -c private 192.168.0.1 pp4MLDProxyRowStatus.1 i 4
pp4MLDProxyReportRangesStart.1 s FF15:0:0:0:0:0:0:1
pp4MLDProxyReportRangesEnd.1 s FF15:0:0:0:0:0:0:0:FFFF
pp4MLDProxyReportRangesFromVLAN.1 u 7 pp4MLDProxyReportRangesToVLAN.1 u 8

Команда добавляет новую запись MLD Proxy Report Range для PP4X с параметрами:

- id=1;
- ip_start: FF15::1;
- ip_end: FF15::FFFF;
- from_vlan: 7;
- to_vlan: 8.

Удаление MLD Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4MLDProxyRowStatus.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 pp4MLDProxyRowStatus.1 i 6

Команда удаляет запись MLD Proxy Report Range c id=1 для PP4X.

2.4.3.2 PLC

Для конфигурирования Proxy Report Range на слотах PLC8 используются таблицы *ltp8xIGMPProxyReportRangesTable, ltp8xMLDProxyReportRangesTable.*

Добавление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xIGMPProxyRowStatus.<slot>.<range_id> i 4 ltp8xIGMPProxyReportRangesStart.<slot>.<range_id> a <range_start>

Itp8xIGMPProxyReportRangesEnd.<slot>.<range_id> a <range_end> Itp8xIGMPProxyReportRangesFromVLAN.<slot>.<range_id> i <from_vlan> Itp8xIGMPProxyReportRangesToVLAN.<slot>.<range_id> i <to_vlan>

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xIGMPProxyRowStatus.15.1 i 4
ltp8xIGMPProxyReportRangesStart.15.1 a 235.0.0.1
ltp8xIGMPProxyReportRangesEnd.15.1 a 235.0.0.100
ltp8xIGMPProxyReportRangesFromVLAN.15.1 i 55
ltp8xIGMPProxyReportRangesToVLAN.15.1 i 56
```

Команда добавляет новую запись IGMP Proxy Report Range для 14 слота с параметрами:

- id=1;
- ip_start: 233.0.0.1;
- ip_end: 233.0.0.100;
- from_vlan: 55;
- to_vlan: 56.

Удаление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xIGMPProxyRowStatus.<slot>.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xIGMPProxyRowStatus.15.1 i 6

Команда удаляет запись с id=1 для 14 слота.

Добавление MLD Proxy Report Range:

Формат команды:

```
snmpset -v2c -c <rw_community> <ipaddr>
ltp8xMLDProxyRowStatus.<slot>.<range_id> i 4
ltp8xMLDProxyReportRangesStart.<slot>.<range_id> a <range_start>
ltp8xMLDProxyReportRangesEnd.<slot>.<range_id> a <range_end>
ltp8xMLDProxyReportRangesFromVLAN.<slot>.<range_id> u <from_vlan>
ltp8xMLDProxyReportRangesToVLAN.<slot>.<range_id> u <to_vlan>
```

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xMLDProxyRowStatus.15.1 i 4
ltp8xMLDProxyReportRangesStart.15.1 s FF15:0:0:0:0:0:0:1
ltp8xMLDProxyReportRangesEnd.15.1 s FF15:0:0:0:0:0:0:0:100
ltp8xMLDProxyReportRangesFromVLAN.15.1 i 57
ltp8xMLDProxyReportRangesToVLAN.15.1 i 58
```

Команда создает новую запись MLD Proxy Report Range для 14 слота с параметрами:

- id=1;
- ip_start: 1;
- ip_end: 100;
- from_vlan: 57;
- to_vlan: 58.

Удаление MLD Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xMLDProxyRowStatus.<slot>.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xMLDProxyRowStatus.15.1 i 6

Команда удаляет запись MLD Proxy Report Range с id=1 для 14 слота.

2.4.3.3 Глобально

Конфигурирование Proxy Report Range глобально для всех слотов PLC8 производится с помощью таблиц *Itp8xIGMPProxyReportRangesGlobalTable, Itp8xMLDProxyReportRangesGlobalTable*.

Добавление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> Itp8xIGMPProxyGlobalRowStatus.<range_id> i 4 Itp8xIGMPProxyReportRangesGlobalStart.<range_id> a <range_start> Itp8xIGMPProxyReportRangesGlobalEnd.<range_id> a <range_end> Itp8xIGMPProxyReportRangesGlobalFromVLAN.<range_id> i <from_vlan> Itp8xIGMPProxyReportRangesGlobalToVLAN.<range_id> i <to_vlan>

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xIGMPProxyGlobalRowStatus.1 i 4
ltp8xIGMPProxyReportRangesGlobalStart.1 a 238.0.0.100
ltp8xIGMPProxyReportRangesGlobalEnd.1 a 238.0.0.150
ltp8xIGMPProxyReportRangesGlobalFromVLAN.1 i 107
ltp8xIGMPProxyReportRangesGlobalToVLAN.1 i 108
```

Команда создает новую глобальную запись IGMP Proxy Report Range, с параметрами:

- id=1;
- ip_start: 233.0.0.100;
- ip_end: 233.0.0.150;
- from_vlan: 107;
- to_vlan: 108.

Удаление IGMP Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xIGMPProxyGlobalRowStatus.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xIGMPProxyGlobalRowStatus.1 i 6

Команда удаляет глобальную запись IGMP Proxy Report Range, c id=1.

Добавление MLD Proxy Report Range: Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xMLDProxyGlobalRowStatus.<range_id> i 4 ltp8xMLDProxyReportRangesGlobalStart.<range_id> s <range_start> ltp8xMLDProxyReportRangesGlobalEnd.<range_id> s <range_end> ltp8xMLDProxyReportRangesGlobalFromVLAN.<range_id> i <from_vlan> ltp8xMLDProxyReportRangesGlobalToVLAN.<range_id> i <to_vlan>

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xMLDProxyGlobalRowStatus.1 i 4
ltp8xMLDProxyReportRangesGlobalStart.1 s FF15:0:0:0:0:0:0:0:0:100
ltp8xMLDProxyReportRangesGlobalEnd.1 s FF15:0:0:0:0:0:0:0:200
ltp8xMLDProxyReportRangesGlobalFromVLAN.1 i 200
ltp8xMLDProxyReportRangesGlobalToVLAN.1 i 300
```

Команда создает новую глобальную запись MLD Proxy Report Range с параметрами:

- id=1;
- ip_start: FF15::100;
- ip_end: FF15::200;
- from_vlan: 200;
- to_vlan: 300.

Удаление MLD Proxy Report Range:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xMLDProxyGlobalRowStatus.<range_id> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xMLDProxyGlobalRowStatus.1 i 6

Команда удаляет глобальную запись MLD Proxy Report Range, c id=1.

2.4.4 Запрос текущей конфигурации по предыдущим пунктам

2.4.4.1 PP4X

IGMP report range:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4IGMPProxyReportRangesStart.<range_id> pp4IGMPProxyReportRangesEnd.<range_id> pp4IGMPProxyReportRangesFromVLAN.<range_id> pp4IGMPProxyReportRangesToVLAN.<range_id>

MLD report range:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
pp4MLDProxyReportRangesStart.<range_id>

pp4MLDProxyReportRangesEnd.<range_id> pp4MLDProxyReportRangesFromVLAN.<range_id> pp4MLDProxyReportRangesToVLAN.<range_id>

Пример:

snmpget -v2c -c public 192.168.0.1 pp4MLDProxyReportRangesStart.1
pp4MLDProxyReportRangesEnd.1 pp4MLDProxyReportRangesFromVLAN.1
pp4MLDProxyReportRangesToVLAN.1

Команда отображает параметры MLD Proxy Report Range c id=1 для PP4X.

2.4.4.2 PLC

IGMP proxy report range:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ltp8xIGMPProxyReportRangesStart.<slot>.<range_id> ltp8xIGMPProxyReportRangesEnd.<slot>.<range_id> ltp8xIGMPProxyReportRangesFromVLAN.<slot>.<range_id> ltp8xIGMPProxyReportRangesToVLAN.<slot>.<range_id>

MLD proxy report range:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ltp8xMLDProxyReportRangesStart.<slot>.<range_id> ltp8xMLDProxyReportRangesEnd.<slot>.<range_id> ltp8xMLDProxyReportRangesFromVLAN.<slot>.<range_id> ltp8xMLDProxyReportRangesToVLAN.<slot>.<range_id>

Пример:

```
snmpget -v2c -c public 192.168.0.1 ltp8xIGMPProxyReportRangesStart.15.1
ltp8xIGMPProxyReportRangesEnd.15.1
ltp8xIGMPProxyReportRangesToVLAN.15.1
ltp8xIGMPProxyReportRangesToVLAN.15.1
```

Команда отображает параметры IGMP Proxy Report Range с id=1 для 14 слота.

2.4.4.3 Глобально

IGMP proxy report range:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ltp8xIGMPProxyReportRangesGlobalStart.<range_id> ltp8xIGMPProxyReportRangesGlobalEnd.<range_id> ltp8xIGMPProxyReportRangesGlobalFromVLAN.<range_id> ltp8xIGMPProxyReportRangesGlobalToVLAN.<range_id> MLD proxy report range: Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
ltp8xMLDProxyReportRangesGlobalStart.<range_id>
ltp8xMLDProxyReportRangesEnd.<slot>.<range_id>
ltp8xMLDProxyReportRangesFromVLAN.<slot>.<range_id>
ltp8xMLDProxyReportRangesToVLAN.<slot>.<range_id>

Пример:

snmpget -v2c -c public 192.168.0.1
ltp8xMLDProxyReportRangesGlobalStart.1
ltp8xMLDProxyReportRangesGlobalEnd.1
ltp8xMLDProxyReportRangesGlobalFromVLAN.1
ltp8xMLDProxyReportRangesGlobalToVLAN.1

Команда отображает глобальные параметры MLD Proxy Report Range c id=1.

2.5 Настройка профилей Cross-connect, DBA, Ports

2.5.1 Cross-connect

Работа с профилями cross-connect осуществляется с помощью таблицы *ltp8xONTCrossConnectProfileTable*.

2.5.1.1 Добавление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTCrossConnectRowStatus.<profile_index> i 4

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTCrossConnectRowStatus.2 i 4
```

Команда добавляет профиль Cross-connect с индексом 2.

2.5.1.2 Редактирование

Особенностью профилей Cross-connect является то, что при необходимости в качестве vlan_id указать ссылку на terminal-vlan — передаётся значение от -100 (terminal-vlan-0), до -131 (terminal-vlan-31).

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>

<parameter_oid_1>.<profile_id> <par1_type> <par1_value>

<parameter_oid_2>.<profile_id> <par2_type> <par2_value>

•••

<parameter_oid_N>.<profile_id> <parN_type> <parN_value>

Где:

- <parameter_oid_N> имена конкретных параметров в MIB;
- <profile_id> индекс профиля;
- <parN_type> тип значения параметра;
- <parN_value> значение параметра.

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTCrossConnectName.2 s
"edited_by_snmp" ltp8xONTCrossConnectModel.2 i 1
ltp8xONTCrossConnectBridgeGroup.2 u 5 ltp8xONTCrossConnectUVID.2 i -101
```

Команда устанавливает для профиля Cross-connect с индексом 2 имя "edited_by_snmp", type "ont", bridge group = 5 и UVID, ссылающийся на terminal-vlan-1.

2.5.1.3 Удаление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTCrossConnectRowStatus.<profile_index> i 6

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTCrossConnectRowStatus.2 i 6
```

Команда удаляет профиль Cross-connect с индексом 2.

2.5.1.4 Запрос списка профилей

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xONTCrossConnectName

Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8xONTCrossConnectName

2.5.2 DBA

Работа с профилями DBA осуществляется с помощью таблицы *ltp8xONTAllocProfileTable*.

2.5.2.1 Добавление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTAllocRowStatus.<profile_index> i 4

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTAllocRowStatus.3 i 4

Команда добавляет профиль DBA с индексом 3.

2.5.2.2 Редактирование

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>

<parameter_oid_1>.<profile_id> <par1_type> <par1_value>

<parameter_oid_2>.<profile_id> <par2_type> <par2_value>

.....

<parameter_oid_N>.<profile_id> <parN_type> <parN_value>

Где:

- <parameter_oid_N> имена конкретных параметров в MIB;
- <profile_id> индекс профиля;
- <parN_type> тип значения параметра;
- <parN_value> значение параметра.

Пример:

```
snmpset -v2c -c private 192.168.0.1
ltp8xONTAllocName.3 s "edited_by_snmp"
ltp8xONTAllocServiceClass.3 i 3
ltp8xONTAllocFixedBandwidth.3 u 269248
```

Команда устанавливает для профиля DBA с индексом 3 имя "edited_by_snmp", service class = cbr и fixed bandwidth 269248.

2.5.2.3 Удаление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTAllocRowStatus.<profile_index> i 6

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTAllocRowStatus.3 i 6
```

Команда удаляет профиль DBA с индексом 3.

2.5.2.4 Запрос списка профилей

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xONTAllocName

Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8xONTAllocName

2.5.3 Ports

Работа с профилями Ports осуществляется с помощью таблиц:

- ltp8xONTPortsProfileTable общие параметры профиля;
- ltp8xONTPortsProfileUNITable UNI-порты;
- Itp8xONTPortsProfileMCDynamicEntriesTable IGMP multicast dynamic entries;
- ltp8xONTPortsProfileMLDDynamicEntriesTable MLD multicast dynamic entries.

2.5.3.1 Добавление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xONTPortsRowStatus.<profile_index> i 4

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTPortsRowStatus.4 i 4

Команда добавляет профиль Ports с индексом 4.

2.5.3.2 Редактирование

Общие параметры:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> <parameter_oid_1>.<profile_id>

<par1_type> <par1_value> <parameter_oid_2>.<profile_id> <par2_type>

<par2_value> ... <parameter_oid_N>.<profile_id>

<parN_type> <parN_value>

Где:

- <parameter_oid_N> имена конкретных параметров в MIB;
- <profile_id> индекс профиля;
- <parN_type> тип значения параметра;
- <parN_value> значение параметра.

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTPortsName.4 s
"edited_by_snmp" ltp8xONTPortsMulticastIPVersion.4 i 1
ltp8xONTPortsMLDVersion.4 u 1 ltp8xONTPortsMLDQueryInterval.4 u 120

Команда устанавливает для профиля Ports с индексом 4 имя "edited_by_snmp", использование IPv6, версию MLD v1 и значение MLD query interval 120.

Параметры UNI-портов: В дополнение к индексу профиля указывается индекс порта (0-3).

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTPortsUNIBridgeGroup.4.0 i
100 ltp8xONTPortsUNIMulticastEnabled.4.0 i 1
ltp8xONTPortsUNIMaxGroups.4.0 u 500
```

Команда устанавливает для профиля Ports с индексом 4, для порта с индексом 0 параметры, bridge group = 100, max groups = 500 и включает multicast.

IGMP multicast dynamic entries:

В дополнение к индексу профиля указывается индекс dynamic entry (0-19).

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xONTPortsMCVLANID.4.14 u 200
ltp8xONTPortsMCFirstGroupIP.4.14 a 224.0.0.0
ltp8xONTPortsMCLastGroupIP.4.14 a 239.255.255.255
```

Команда устанавливает для параметра multicast dynamic entry (с индексом 14) профиля Ports (с индексом 4) следующие значения: vlan_id = 200, first group ip = 224.0.0.0, last group ip = 239.255.255.255.

MLD multicast dynamic entries:

В дополнение к индексу профиля указывается индекс dynamic entry (0-19).

Пример:

Команда устанавливает для параметра multicast dynamic entry (с индексом 12) профиля Ports (с индексом 4) следующие значения: vlan_id = 30, first group ip = FF01:0:0:0:0:0:0:0:FC, last group ip = FF01:0:0:0:0:0:0:FD и preview length = 1024.

2.5.3.3 Удаление

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTPortsRowStatus.<profile_index> i 6

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTPortsRowStatus.4 i 6

Команда удаляет профиль Ports с индексом 4.

2.5.3.4 Запрос списка профилей

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xONTPortsName

snmpwalk -v2c -c public 192.168.0.1 ltp8xONTPortsName

2.6 Конфигурация слотов PLC

2.6.1 Изменение типа модуля PLC

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4ShelfConfigBoardType.<slot> i <board_type>

Где board_type может принимать значения 3 (plc8) и 0 (none).

Пример:

snmpset -v2c -c private 192.168.0.1 pp4ShelfConfigBoardType.15 i 3

Команда устанавливает для 14 слота тип модуля «PLC8».

2.6.2 Запрос состояния модуля PLC

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4SlotsState.<slot>

Пример:

snmpget -v2c -c public 192.168.0.1 pp4SlotsState.15

Возможные состояния модулей:

- absent (0);
- discovery (1);
- booting (2);
- operational (3);
- lost (4);
- sand (5);
- fail (6);
- notBooting (7).

2.7 Каналы РОN

2.7.1 Включение, выключение каналов PON

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr>
ltp8xPONChannelEnabled.<slot>.<gpon_port> i <value>

Где:

- <gpon_port> значение номера порта, увеличенное на 1;
- <value> возможные значения:

- 1 Enable;
- 2 Disable.

snmpset -v2c -c private 192.168.0.1 ltp8xPONChannelEnabled.15.1 i 2

Команда отключает gpon-port 14/0.

2.7.2 Реконфигурация

Формат команды:

```
snmpset -v2c -c <rw_community> <ipaddr>
ltp8xPONChannelReconfigure.<slot>.<gpon_port> u 1
```

Где:

```
• <gpon_port> - значение номера порта, увеличенное на 1.
```

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xPONChannelReconfigure.15.1 u 1

Команда выполняет реконфигурацию gpon-port 14/0.

2.7.3 Просмотр счетчиков

Просмотр счетчиков PON-канала осуществляется запросом счетчиков соответствующего PON-порта switch.

Соответствия PON-каналов индексам портов в switch указаны в таблице ltp8xSwitchPortsName.

РОN-канал	Индекс порта switch
0	2
1	3
2	8
3	9
4	10
5	11
6	12
7	13

2.7.3.1 Ethernet-счетчики

Запрос счетчиков осуществляется с помощью таблицы *ltp8xSwitchPortCountersTable*.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> <counter_oid>.<slot>.<port_index>

snmpget -v2c -c public 192.168.0.1 ltp8xSwitchPortGoodOctetsRcv.15.9
ltp8xSwitchPortGoodPktsRcv.15.9

Команда запрашивает количество полученных октетов и пакетов для 3 PON-канала PLC в 14 слоте.

2.7.3.2 Утилизация интерфейсов

Запрос осуществляется с помощью таблицы ltp8xSwitchPortsUtilization.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> <utilization_oid>.<slot>.<port_index>

Пример:

```
snmpget -v2c -c public 192.168.0.1
ltp8xPortsUtilizationLastKbitsSent.15.13
ltp8xPortsUtilizationLastKbitsRecv.15.13
ltp8xPortsUtilizationLastFramesSent.15.13
ltp8xPortsUtilizationAverageKbitsSent.15.13
ltp8xPortsUtilizationAverageFramesSent.15.13
ltp8xPortsUtilizationAverageFramesSent.15.13
```

Команда запрашивает параметры утилизации для 7 PON-канала PLC в 14 слоте.

Интервал для подсчёта утилизации можно установить следующим запросом:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xPortsUtilizationInterval.0 u <interval>

Пример:

```
snmpset -v2c -c private 192.168.0.1 ltp8xPortsUtilizationInterval.0 u
300
```

3 Операции загрузки/выгрузки, обновления

3.1 IIO OLT (tftp/http)

3.1.1 Загрузка ПО OLT

Для обновления ПО OLT используется группа параметров pp4FirmwareUpdate.

Параметр	Описание
pp4FirmwareUpdateFileName	Имя файла ПО OLT
pp4FirmwareUpdateIpAddress	IP-адрес сервера с файлом ПО
pp4FirmwareUpdateSwitchVersion	Выполнять или нет автоматическую смену образа ПО на загруженный
pp4FirmwareUpdateNeedRestart	Выполнять или нет автоматический перезапуск после загрузки
pp4FirmwareUpdateProtocol	Протокол для доступа к файлу http/tftp
pp4FirmwareUpdatePort	Порт сервера с файлом ПО
pp4FirmwareUpdateAction	Инициировать процесс обновления

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4FirmwareUpdateFileName.0 s "<file_name>" pp4FirmwareUpdateIpAddress.0 a <server_ip> pp4FirmwareUpdateSwitchVersion.0 i <change_version_value> pp4FirmwareUpdateNeedRestart.0 i <need_restart_value> pp4FirmwareUpdateProtocol.0 i <download_protocol> pp4FirmwareUpdateAction.0 u 1

Где

- <server_ip> IP-адрес tftp/http-сервера с файлом ПО;
- <download_protocol> принимает значения download/httpdownload для загрузки по tftp/http соответственно.

Пример:

```
snmpset -v2c -c private 192.168.0.1 pp4FirmwareUpdateFileName.0 s
"ma4000_fw/firmware.3.26.0.1356.ma4k" pp4FirmwareUpdateIpAddress.0 a
192.168.0.55 pp4FirmwareUpdateSwitchVersion.0 i 1
pp4FirmwareUpdateNeedRestart.0 i 1 pp4FirmwareUpdateProtocol.0 i 1
pp4FirmwareUpdateAction.0 u 1
```

Команда выполняет загрузку файла ПО ma4000_fw/firmware.3.26.0.1356.ma4k с tftp-сервера 192.168.0.55, автоматически меняет активный образ ПО и перезагружает устройство.

Прогресс обновления можно отслеживать по сообщениям snmp-trap от устройства.

3.1.2 Смена активного образа ПО

Формат команды:

snmpset -v2c -c <rw_community> -t 20 <ipaddr>
pp4UnitsActivePartition.<unit_value> i <image_value>

snmpset -v2c -c private -t 20 192.168.0.1 pp4UnitsActivePartition.2 i 2

Команда устанавливает активным 2 образ ПО для Unit2.

3.1.3 Подтверждение замены ПО

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4FirmwareUpdateConfirm.0 u 1

Пример:

snmpset -v2c -c private 192.168.0.1 pp4FirmwareUpdateConfirm.0 u 1

Команда выполняет подтверждение смены применённого образа ПО.

3.1.4 Запрос текущего ПО корзины

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4SystemUnit1FirmwareVersion.0 pp4SystemUnit2FirmwareVersion.0

Пример:

```
snmpget -v2c -c public 192.168.0.1 pp4SystemUnit1FirmwareVersion.0
pp4SystemUnit2FirmwareVersion.0
```

3.2 Перезагрузка

3.2.1 Перезагрузка корзины

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4RebootCommand.102 u 1

Пример:

snmpset -v2c -c private 192.168.0.1 pp4RebootCommand.102 u 1

3.2.2 Перезагрузка слотов (PP4X, PLC)

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> pp4RebootCommand.<board_id> u 1

Где:

• <board_id> — принимает значения 1-16 (слоты PLC), 100 (master PP4X), 101 (slave PP4X).

snmpset -v2c -c private 192.168.0.1 pp4RebootCommand.15 u 1

Команда используется для перезагрузки слота 14.

3.3 **ПО ONT**

3.3.1 Загрузка ПО

Для загрузки ПО ONT служит группа параметров ltp8xONTFirmwaresDownload.

Параметр	Описание
ltp8xONTFirmwaresDownloadPath	Имя файла ПО ONT
ltp8xONTFirmwaresDownloadIPAddress	IP-адрес сервера с файлом ПО
ltp8xONTFirmwaresDownloadProtocol	Протокол для доступа к файлу http/tftp
ltp8xONTFirmwaresDownloadPort	Порт сервера с файлом ПО
ltp8xONTFirmwaresDownloadAction	Инициировать процесс обновления

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTFirmwaresDownloadPath.0 s "<file_name>" ltp8xONTFirmwaresDownloadIPAddress.0 a <server_ip> ltp8xONTFirmwaresDownloadProtocol.0 i <download_protocol> ltp8xONTFirmwaresDownloadPort.0 u <server_port> ltp8xONTFirmwaresDownloadAction.0 u 1

Где:

- <server_ip> IP-адрес tftp/http-сервера с файлом ПО;
- <download_protocol> принимает значения download/httpdownload для загрузки по tftp/http соответственно.

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTFirmwaresDownloadPath.0 s
"ntp-rg-revb-3.24.3.87.fw.bin" ltp8xONTFirmwaresDownloadIPAddress.0 a
192.168.0.55 ltp8xONTFirmwaresDownloadProtocol.0 i 2
ltp8xONTFirmwaresDownloadPort.0 u 8080 ltp8xONTFirmwaresDownloadAction.0 u 1

Команда выполняет загрузку файла ПО ntp-rg-revb-3.24.3.87.fw.bin с порта 8080 http-сервера 192.168.0.55.

3.3.2 Запрос списка загруженного ПО

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xONTFirmwaresFilesName

Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8xONTFirmwaresFilesName

3.3.3 Удаление загруженного ПО

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> ltp8xONTFirmwaresFilesDelete.<file_id> u 1

Где:

• <file_id> — ID файла ПО ОNТ в списке (см. «Запрос списка загруженного ПО»)).

Пример:

snmpset -v2c -c private 192.168.0.1 ltp8xONTFirmwaresFilesDelete.2 u 1

Команда удаляет файл ПО с индексом 2.

3.4 Загрузка/выгрузка конфигурации

3.4.1 Выгрузка бэкапа конфигурации

Формат команд:

Πο TFTP:

snmpset -v2c -c <rw_community> <ipaddr> cmdFileOperationPrivateCfg.0 s
"<tftp_server_ip> <tftp_path> upload"

Πο HTTP:

snmpset -v2c -c <rw_community> <ipaddr> cmdFileOperationPrivateCfg.0 s "<http_sever_ip> <http_path> httpupload"

Где:

• <tftp_path>, <http_path> - полный путь для выгрузки файла на сервер.

Пример:

snmpset -v2c -c private 192.168.0.1 cmdFileOperationPrivateCfg.0 s
"192.168.0.55 new_config.cfg upload"

Команда выполняет выгрузку конфигурации по TFTP на сервер 192.168.0.55 в файл с именем new_config.cfg.

3.4.2 Загрузка бэкапа конфигурации

Формат команд:

Πο TFTP:

snmpset -v2c -c <rw_community> <ipaddr> cmdFileOperationPrivateCfg.0 s "<tftp_ip> <tftp_path> download"

Πο HTTP:

snmpset -v2c -c <rw_community> <ipaddr> cmdFileOperationPrivateCfg.0 s "<http_ip> <http_path> httpdownload"

Где:

• <tftp_path>, <http_path> - полный путь для скачивания файла с сервера.

Пример:

```
snmpset -v2c -c private 192.168.0.1 cmdFileOperationPrivateCfg.0 s
"192.168.0.55:8080 config/new_config.cfg httpdownload"
snmpset -v2c -c private 192.168.0.1 cmdFileOperationPrivateCfg.0 s
"192.168.0.55:8080 config/new_config.cfg apply"
snmpset -v2c -c private 192.168.0.1 cmdFileOperationPrivateCfg.0 s
"192.168.0.55:8080 config/new_config.cfg confirm"
```

Команда выполняет загрузку конфигурации по HTTP с сервера 192.168.0.55, порт 8080, из файла config/ new_config.cfg.

4 Мониторинг OLT

4.1 Активные аварии

Получение количества активных аварий:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> omsActiveAlarms.0

Пример:

snmpget -v2c -c public 192.168.0.1 omsActiveAlarms.0

Получение активных аварий в виде трапов:

Формат команды:

snmpset -v2c -c <rw_community> <ipaddr> omsActiveAlarms.0 u 1

Пример:

snmpset -v2c -c private 192.168.0.1 omsActiveAlarms.0 u 1

Команда отправляет запрос на вывод всех активных аварий устройства в виде snmp-trap-сообщений.

4.2 Общие сведения о корзине, PP4X, PLC8

Общие сведения о MA4000 собраны в группах pp4System и pp4BoardState.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> <parameter_oid>.0

Пример:

```
snmpget -v2c -c public 192.168.0.1 pp4SystemUnit1SerialNumber.0
pp4BoardFan3AbsoluteSpeed.0
```

Команда отображает серийный номер Unit1 и текущую скорость вентилятора Fan3.

Общие сведения о PLC8 собраны в таблицу *ltp8xPLCBoardStateTable*.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> <parameter_oid>.<slot>

Пример:

snmpget -v2c -c public 192.168.0.1 ltp8xPLCBoardStateRAMFree.15

Команда отображает количество свободной памяти в байтах для 14 слота.

4.3 Электропитание

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4Feeder1Status.0 pp4Feeder1Active.0 pp4Feeder1Polarity.0 pp4Feeder1Current.0 pp4Feeder1Voltage.0 pp4Feeder2Status.0 pp4Feeder2Active.0 pp4Feeder2Polarity.0 pp4Feeder2Current.0 pp4Feeder2Voltage.0 pp4StationVoltage.0

Пример:

```
snmpget -v2c -c public 192.168.0.1 pp4Feeder1Status.0 pp4Feeder1Active.0
pp4Feeder1Polarity.0 pp4Feeder1Current.0 pp4Feeder1Voltage.0
pp4Feeder2Status.0 pp4Feeder2Active.0 pp4Feeder2Polarity.0
pp4Feeder2Current.0 pp4Feeder2Voltage.0 pp4StationVoltage.0
```

4.4 Состояние портов РР4Х и РОN-каналов PLC8

Для отображения состояния портов используется таблица if Table.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> ifOperStatus.<ifIndex>

Пример:

```
snmpget -v2c -c public 192.168.0.1 ifOperStatus.63
```

Команда отображает состояние front-port 2/1.

Для отображения состояния pon-каналов используется таблица ltp8xPONChannelStateTable.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
<parameter_oid>.<slot>.<pon_channel_id>

Пример:

snmpget -v2c -c public 192.168.0.1 ltp8xPONChannelONTCount.15.4
ltp8xPONChannelSFPVendor.15.4 ltp8xPONChannelSFPProductNumber.15.4
ltp8xPONChannelSFPRevision.15.4

Команда выводит для 3 канала 14 слота количество ONT и данные SFP.

4.5 Таблица МАС

Таблица МАС-адресов РР4Х:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> pp4MacAddressEntryID

snmpwalk -v2c -c public 192.168.0.1 pp4MacAddressEntryID

Команда выводит индексы таблицы МАС-адресов РР4Х.

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4MacAddressVLAN.<entry_id>
pp4MacAddressAddress.<entry_id> pp4MacAddressPort.<entry_id>
pp4MacAddressType.<entry_id>

Где:

• <entry_id> - номер записи в таблице.

Пример:

```
snmpget -v2c -c public 192.168.0.1 pp4MacAddressVLAN.3
pp4MacAddressAddress.3 pp4MacAddressPort.3 pp4MacAddressType.3
```

Команда выводит 3 запись из таблицы МАС-адресов РР4Х.

Таблица MAC-адресов switch PLC:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr>
ltp8xSwitchMacListMacAddressString.<slot>

Пример:

```
snmpwalk -v2c -c public 192.168.0.1
ltp8xSwitchMacListMacAddressString.15
```

Команда выводит таблицу МАС-адресов 14-го слота в виде списка МАС.

После этого, зная параметры конкретной записи, можно дополнительно запросить для неё интерфейс и тип:

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
ltp8xSwitchMacListInterface.<slot>.<vid>.<dec_macaddress>
ltp8xSwitchMacListStatic.<slot>.<vid>.<dec_macadress>

Где:

• <dec_macadress> - MAC-адрес, в виде последовательности десятичных чисел.

Пример:

```
snmpget -v2c -c public 192.168.0.1 ltp8xSwitchMacListInterface.
15.236.152.222.208.0.205.252 ltp8xSwitchMacListStatic.
15.236.152.222.208.0.205.252
```

Команда запрашивает интерфейс и тип записи с 14 слота, с MAC-адресом 98:de:d0:00:cd:fc в 236 VLAN.

4.6 Multicast

Multicast-группы PP4X есть возможность запросить с помощью таблицы pp4MulticastGroupsTable.

Перечень групп и их entry_id можно получить следующим запросом:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> pp4MulticastEntryID

Пример:

snmpwalk -v2c -c public 192.168.0.1 pp4MulticastEntryID

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr> pp4MulticastVLAN.<entry_id>
pp4MulticastGroupAddress.<entry_id> pp4MulticastMemberPorts.<entry_id>
pp4MulticastExpires.<entry_id>

Где:

• <entry_id> - номер записи в таблице.

Пример:

```
snmpget -v2c -c public 192.168.0.1 pp4MulticastVLAN.1
pp4MulticastGroupAddress.1 pp4MulticastMemberPorts.1
pp4MulticastExpires.1
```

Команда запрашивает сведения о multicast-группе, имеющей индекс 1 в таблице.

Multicast-группы PLC: см. раздел Таблица IGMP-групп.

4.7 РРРоЕ-сессии

Информация о PPPoE-сессиях доступна в таблице *ltp8xOLTPPPoESessionsTable*.

Получить перечень клиентских МАС-адресов сессий можно запросом:

Формат команды:

snmpwalk -v2c -c <ro_community> <ipaddr> ltp8xOLTPPPoESessionsClientMac.<slot>.<gpon_port>.<ont_id> Пример:

snmpwalk -v2c -c public 192.168.0.1 ltp8x0LTPPPoESessionsClientMac.15.7.0

Команда выводит МАС-адрес PPPoE-сессии для ONT 14/6/0.

Зная МАС-адрес PPPoE-сессии конкретной записи в таблице, можно запросить для неё дополнительные данные (ONT GEM-порт, ID сессии PPPoE, продолжительность сессии PPPoE, время разблокировки порта ONT. Время разблокировки порта ONT не равно нулю в случае блокировки при превышении лимита PPPoE-пакетов. Значение лимита настраивается в profile pppoe-ia, серийный номер ONT):

Формат команды:

snmpget -v2c -c <ro_community> <ipaddr>
ltp8xOLTPPPoESessionsPort.<slot>.<channel>.<ont_id>.<client_mac>
ltp8xOLTPPPoESessionsSessionID.<slot>.<channel>.<ont_id>.<dec_client_mac</pre>

> ltp8xOLTPPPoESessionsDuration.<slot>.<channel>.<ont_id>.<client_mac> ltp8xOLTPPPoESessionsUnblock.<slot>.<channel>.<ont_id>.<client_mac> ltp8xOLTPPPoESessionsSerial.<slot>.<channel>.<ont_id>.<client_mac>

Пример:

snmpget -v2c -c public 192.168.0.1 ltp8xOLTPPPoESessionsPort.15.7.0.168.249.75.90.189.124 ltp8xOLTPPPoESessionsSessionID.15.7.0.168.249.75.90.189.124 ltp8xOLTPPPoESessionsDuration.15.7.0.168.249.75.90.189.124 ltp8xOLTPPPoESessionsUnblock.15.7.0.168.249.75.90.189.124 ltp8xOLTPPPoESessionsSerial.15.7.0.168.249.75.90.189.124

Команда выводит информацию о PPPoE-сессии для ONT 14/6/0 с MAC a8:f9:4b:5a:bd:7c.

5 Список изменений

Версия документа	Дата выпуска	Содержание изменений
Версия 6.0	30.04.2024	Синхронизация с версией ПО 3.38.0
Версия 5.0	24.10.2022	Синхронизация с версией ПО 3.36.0
Версия 4.0	09.02.2022	Синхронизация с версией ПО 3.34.1
Версия 3.0	14.12.2021	Синхронизация с версией ПО 3.34.0
Версия 2.0	31.08.2021	Синхронизация с версией ПО 3.32.0 Добавлены разделы: 1.1.3 Управление РоЕ на портах Изменения в разделах: 1.2.6.2 Состояние ЕТН-портов
Версия 1.0	16.04.2020	Первая публикация
Версия программного обеспечения		3.38.0

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Для получения технической консультации по вопросам эксплуатации оборудования ООО «Предприятие «ЭЛТЕКС» вы можете обратиться в Сервисный центр компании:

Форма обратной связи на сайте: https://eltex-co.ru/support/

Servicedesk: https://servicedesk.eltex-co.ru

На официальном сайте компании вы можете найти техническую документацию и программное обеспечение для продукции ООО «Предприятие «ЭЛТЕКС», обратиться к базе знаний, оставить интерактивную заявку:

Официальный сайт компании: https://eltex-co.ru

База знаний: https://docs.eltex-co.ru/display/EKB/Eltex+Knowledge+Base

Центр загрузок: https://eltex-co.ru/support/downloads